Rochester Institute of Technology, Rochester, NY 14623, USA.
IEEE Trans Biomed Eng. 2011 Apr;58(4):943-8. doi: 10.1109/TBME.2010.2098031. Epub 2010 Dec 10.
Small mammals, particularly mice, are very useful animal models for biomedical research. Extremely small anatomical dimensions, however, make design of implantable microsystems quite challenging. A method for coupling external fluidic systems to microfluidic channels via in-plane interconnects is presented. Capillary tubing is inserted into channels etched in the surface of a Si wafer with a seal created by Parylene-C deposition. Prediction of Parylene-C deposition into tapered channels based on Knudsen diffusion and deposition characterizations allows for design optimization. Low-volume interconnects using biocompatible, chemical resistant materials have been demonstrated and shown to withstand pressure as high as 827 kPa (120 psi) with an average pull test strength of 2.9 N. Each interconnect consumes less than 0.018 mm3 (18 nL) of volume. The low added volume makes this an ideal interconnect technology for medical applications where implant volume is critical.
小型哺乳动物,尤其是老鼠,是非常有用的生物医学研究动物模型。然而,非常小的解剖尺寸使得可植入微系统的设计极具挑战性。本文提出了一种通过平面内互连将外部流体系统与微流道耦合的方法。毛细管插入到硅片表面刻蚀的通道中,通过聚对二甲苯 C 的沉积形成密封。基于克努森扩散和沉积特性对聚对二甲苯 C 沉积到锥形通道中的预测,允许进行设计优化。使用生物相容性、耐化学性材料的低体积互连已经得到了证明,并且可以承受高达 827 kPa(120 psi)的压力,平均拉力测试强度为 2.9 N。每个互连消耗的体积小于 0.018 毫米 3(18 纳升)。低附加体积使得这种互连技术非常适合植入体积至关重要的医疗应用。