Institute for Theoretical Physics, Universiteit van Amsterdam, Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands.
Phys Biol. 2010 Dec 9;7(4):045006. doi: 10.1088/1478-3975/7/4/045006.
Bacteriophages, phages for short, are viruses of bacteria. The majority of phages contain a double-stranded DNA genome packaged in a capsid at a density of ∼500 mg ml(-1). This high density requires substantial compression of the normal B-form helix, leading to the conjecture that DNA in mature phage virions is under significant pressure, and that pressure is used to eject the DNA during infection. A large number of theoretical, computer simulation and in vitro experimental studies surrounding this conjecture have revealed many--though often isolated and/or contradictory--aspects of packaged DNA. This prompts us to present a unified view of the statistical physics and thermodynamics of DNA packaged in phage capsids. We argue that the DNA in a mature phage is in a (meta)stable state, wherein electrostatic self-repulsion is balanced by curvature stress due to confinement in the capsid. We show that in addition to the osmotic pressure associated with the packaged DNA and its counterions, there are four different pressures within the capsid: pressure on the DNA, hydrostatic pressure, the pressure experienced by the capsid and the pressure associated with the chemical potential of DNA ejection. Significantly, we analyze the mechanism of force transmission in the packaged DNA and demonstrate that the pressure on DNA is not important for ejection. We derive equations showing a strong hydrostatic pressure difference across the capsid shell. We propose that when a phage is triggered to eject by interaction with its receptor in vitro, the (thermodynamic) incentive of water molecules to enter the phage capsid flushes the DNA out of the capsid. In vivo, the difference between the osmotic pressures in the bacterial cell cytoplasm and the culture medium similarly results in a water flow that drags the DNA out of the capsid and into the bacterial cell.
噬菌体,简称 phages,是细菌的病毒。大多数噬菌体包含一个双链 DNA 基因组,封装在一个衣壳中,密度约为 500mg/ml。这种高密度要求正常 B 型螺旋有大量压缩,导致人们推测成熟噬菌体病毒粒子中的 DNA 受到很大的压力,并且这种压力在感染过程中用于喷射 DNA。围绕这一推测的大量理论、计算机模拟和体外实验研究揭示了包装 DNA 的许多方面——尽管这些方面常常是孤立的和/或相互矛盾的。这促使我们提出了一种统一的观点,即噬菌体衣壳中包装 DNA 的统计物理和热力学。我们认为,成熟噬菌体中的 DNA 处于(亚)稳定状态,其中静电自斥由衣壳限制引起的曲率应力平衡。我们表明,除了与包装 DNA 及其抗衡离子相关的渗透压外,衣壳内还有四种不同的压力:DNA 上的压力、静水压力、衣壳所经历的压力以及与 DNA 喷射化学势相关的压力。重要的是,我们分析了包装 DNA 中的力传递机制,并证明 DNA 上的压力对于喷射并不重要。我们推导出了显示衣壳壳层中存在强静水压力差的方程。我们提出,当噬菌体通过与体外受体相互作用被触发喷射时,水分子进入噬菌体衣壳的(热力学)激励将 DNA 从衣壳中冲出。在体内,细菌细胞质和培养液之间的渗透压差异同样导致水流将 DNA 从衣壳中拖出并进入细菌细胞。