Institute for Quantitative Social Science, Harvard University, Cambridge, Massachusetts, United States of America.
PLoS One. 2010 Dec 2;5(12):e14204. doi: 10.1371/journal.pone.0014204.
Despite the common experience that interrupted sleep has a negative impact on waking function, the features of human sleep-wake architecture that best distinguish sleep continuity versus fragmentation remain elusive. In this regard, there is growing interest in characterizing sleep architecture using models of the temporal dynamics of sleep-wake stage transitions. In humans and other mammals, the state transitions defining sleep and wake bout durations have been described with exponential and power law models, respectively. However, sleep-wake stage distributions are often complex, and distinguishing between exponential and power law processes is not always straightforward. Although mono-exponential distributions are distinct from power law distributions, multi-exponential distributions may in fact resemble power laws by appearing linear on a log-log plot.
METHODOLOGY/PRINCIPAL FINDINGS: To characterize the parameters that may allow these distributions to mimic one another, we systematically fitted multi-exponential-generated distributions with a power law model, and power law-generated distributions with multi-exponential models. We used the Kolmogorov-Smirnov method to investigate goodness of fit for the "incorrect" model over a range of parameters. The "zone of mimicry" of parameters that increased the risk of mistakenly accepting power law fitting resembled empiric time constants obtained in human sleep and wake bout distributions.
CONCLUSIONS/SIGNIFICANCE: Recognizing this uncertainty in model distinction impacts interpretation of transition dynamics (self-organizing versus probabilistic), and the generation of predictive models for clinical classification of normal and pathological sleep architecture.
尽管人们普遍认为睡眠中断会对清醒功能产生负面影响,但仍难以确定区分睡眠连续性和碎片化的最佳人类睡眠-觉醒结构特征。在这方面,人们越来越感兴趣的是使用睡眠-觉醒阶段转换的时间动态模型来描述睡眠结构。在人类和其他哺乳动物中,定义睡眠和觉醒持续时间的状态转换分别采用指数和幂律模型进行描述。然而,睡眠-觉醒阶段分布通常很复杂,区分指数和幂律过程并不总是那么直接。尽管单指数分布与幂律分布不同,但多指数分布实际上可能通过在对数-对数图上呈现线性而类似于幂律。
方法/主要发现:为了描述可能使这些分布相互模仿的参数,我们系统地使用幂律模型拟合多指数生成的分布,以及使用多指数模型拟合幂律生成的分布。我们使用柯尔莫哥洛夫-斯米尔诺夫方法在一系列参数范围内研究“错误”模型的拟合优度。增加错误地接受幂律拟合风险的参数“模拟区”类似于在人类睡眠和觉醒持续时间分布中获得的经验时间常数。
结论/意义:认识到模型区分中的这种不确定性会影响对转换动力学(自组织与概率)的解释,以及为正常和病理性睡眠结构的临床分类生成预测模型。