Suppr超能文献

一种用于时间序列分析的精确概率步长查找器。

An accurate probabilistic step finder for time-series analysis.

作者信息

Rojewski Alex, Schweiger Max, Sgouralis Ioannis, Comstock Matthew, Pressé Steve

机构信息

Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona.

Department of Mathematics, University of Tennessee, Knoxville, Knoxville, Tennessee.

出版信息

Biophys J. 2024 Sep 3;123(17):2749-2764. doi: 10.1016/j.bpj.2024.01.008. Epub 2024 Jan 9.

Abstract

Noisy time-series data-from various experiments, including Förster resonance energy transfer, patch clamp, and force spectroscopy, among others-are commonly analyzed with either hidden Markov models or step-finding algorithms, both of which detect discrete transitions. Hidden Markov models, including their extensions to infinite state spaces, inherently assume exponential-or technically geometric-holding time distributions, biasing step locations toward steps with geometric holding times, especially in sparse and/or noisy data. In contrast, existing step-finding algorithms, while free of this restraint, often rely on ad hoc metrics to penalize steps recovered in time traces (by using various information criteria) and otherwise rely on approximate greedy algorithms to identify putative global optima. Here, instead, we devise a robust and general probabilistic (Bayesian) step-finding tool that neither relies on ad hoc metrics to penalize step numbers nor assumes geometric holding times in each state. As the number of steps themselves in a time-series are a priori unknown, we treat these within a Bayesian nonparametric (BNP) paradigm. We find that the method developed, BNP Step (BNP-Step), accurately determines the number and location of transitions between discrete states without any assumed kinetic model and learns the emission distribution characteristic of each state. In doing so, we verify that BNP-Step can analyze sparser data sets containing higher noise and more closely spaced states than otherwise resolved by current state-of-the-art methods. What is more, BNP-Step rigorously propagates measurement uncertainty into uncertainty over state transition locations, numbers, and emission levels as characterized by the posterior. We demonstrate the performance of BNP-Step on both synthetic data as well as data drawn from force spectroscopy experiments.

摘要

来自各种实验(包括荧光共振能量转移、膜片钳和力谱等)的噪声时间序列数据,通常使用隐马尔可夫模型或步长查找算法进行分析,这两种方法都能检测离散跃迁。隐马尔可夫模型,包括其对无限状态空间的扩展,本质上假设为指数型(或技术上为几何型)的保持时间分布,这会使步长位置偏向具有几何保持时间的步长,特别是在稀疏和/或有噪声的数据中。相比之下,现有的步长查找算法虽然没有这种限制,但通常依赖临时指标来惩罚在时间轨迹中恢复的步长(通过使用各种信息准则),并且在其他方面依赖近似贪婪算法来识别假定的全局最优解。在此,我们设计了一种强大且通用的概率(贝叶斯)步长查找工具,它既不依赖临时指标来惩罚步数,也不假设每个状态中的几何保持时间。由于时间序列中步长的数量本身是先验未知的,我们在贝叶斯非参数(BNP)范式中处理这些问题。我们发现所开发的方法BNP步长(BNP-Step)能够准确确定离散状态之间跃迁的数量和位置,而无需任何假设的动力学模型,并且能够学习每个状态的发射分布特征。通过这样做,我们验证了BNP-Step能够分析比当前最先进方法所能解析的更稀疏、包含更高噪声和状态间隔更近的数据集。此外,BNP-Step严格地将测量不确定性传播到由后验表征的状态跃迁位置、数量和发射水平的不确定性中。我们在合成数据以及从力谱实验中获取的数据上展示了BNP-Step的性能。

相似文献

1
An accurate probabilistic step finder for time-series analysis.一种用于时间序列分析的精确概率步长查找器。
Biophys J. 2024 Sep 3;123(17):2749-2764. doi: 10.1016/j.bpj.2024.01.008. Epub 2024 Jan 9.

引用本文的文献

1
Mamba time series forecasting with uncertainty quantification.具有不确定性量化的曼巴时间序列预测。
Mach Learn Sci Technol. 2025 Sep 30;6(3):035012. doi: 10.1088/2632-2153/adec3b. Epub 2025 Jul 22.
2
Machine learning tools advance biophysics.机器学习工具推动生物物理学发展。
Biophys J. 2024 Sep 3;123(17):E1-E3. doi: 10.1016/j.bpj.2024.07.036. Epub 2024 Aug 21.

本文引用的文献

4
Optical tweezers in single-molecule biophysics.单分子生物物理学中的光镊
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00021-6. Epub 2021 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验