Suppr超能文献

在 fMRI 多变量分析的层次[纠正]框架中映射信息聚类。

Mapping informative clusters in a hierarchical [corrected] framework of FMRI multivariate analysis.

机构信息

College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China.

出版信息

PLoS One. 2010 Nov 30;5(11):e15065. doi: 10.1371/journal.pone.0015065.

Abstract

Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies.

摘要

模式识别方法在 fMRI 数据分析中越来越受欢迎,它们在区分与不同心理状态相关的多体素脑活动模式方面非常有效。然而,当它们用于功能脑映射时,判别体素的位置会发生很大变化,这给解释效应的位置带来了困难。在这里,我们提出了一种层次化的多元方法框架,该框架将信息丰富的聚类而不是体素映射到实现可靠的功能脑映射,而不会牺牲判别能力。具体来说,我们首先搜索由具有相似响应模式的体素组成的局部同质聚类。然后,为每个聚类构建一个多体素分类器,以从多体素模式中提取判别信息。最后,通过多元排序,分类器的输出作为多聚类模式,通过检查聚类之间的相互作用来识别信息丰富的聚类。来自模拟和真实 fMRI 数据的结果表明,与传统的基于体素的多元方法相比,这种层次化方法在功能脑映射的稳健性方面表现更好。此外,两个感知等价的物体类别之间的映射聚类高度重叠,进一步证实了我们方法的有效性。总之,多元方法的层次化框架适用于 fMRI 研究中的模式分类和大脑映射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6851/2994831/832246d7ac48/pone.0015065.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验