Carroll Melissa K, Cecchi Guillermo A, Rish Irina, Garg Rahul, Rao A Ravishankar
Department of Computer Science, Princeton University, 35 Olden Street, NJ 08540, USA.
Neuroimage. 2009 Jan 1;44(1):112-22. doi: 10.1016/j.neuroimage.2008.08.020. Epub 2008 Aug 27.
We explore to what extent the combination of predictive and interpretable modeling can provide new insights for functional brain imaging. For this, we apply a recently introduced regularized regression technique, the Elastic Net, to the analysis of the PBAIC 2007 competition data. Elastic Net regression controls via one parameter the number of voxels in the resulting model, and via another the degree to which correlated voxels are included. We find that this method produces highly predictive models of fMRI data that provide evidence for the distributed nature of neural function. We also use the flexibility of Elastic Net to demonstrate that model robustness can be improved without compromising predictability, in turn revealing the importance of localized clusters of activity. Our findings highlight the functional significance of patterns of distributed clusters of localized activity, and underscore the importance of models that are both predictive and interpretable.
我们探讨预测性建模与可解释性建模的结合在多大程度上能为功能性脑成像提供新见解。为此,我们将最近引入的一种正则化回归技术——弹性网络应用于2007年PBAIC竞赛数据的分析。弹性网络回归通过一个参数控制所得模型中的体素数量,并通过另一个参数控制相关体素的纳入程度。我们发现这种方法能生成功能磁共振成像数据的高度预测性模型,为神经功能的分布式本质提供了证据。我们还利用弹性网络的灵活性证明,在不影响可预测性的情况下可以提高模型的稳健性,进而揭示局部活动簇的重要性。我们的研究结果突出了局部活动分布式簇模式的功能意义,并强调了兼具预测性和可解释性的模型的重要性。