Suppr超能文献

强化学习与比例积分微分控制在模拟术中患者催眠中的比较。

Reinforcement learning versus proportional-integral-derivative control of hypnosis in a simulated intraoperative patient.

机构信息

Department of Computer Science, Texas Tech University, Lubbock, Texas, USA.

出版信息

Anesth Analg. 2011 Feb;112(2):350-9. doi: 10.1213/ANE.0b013e318202cb7c. Epub 2010 Dec 14.

Abstract

BACKGROUND

Research has demonstrated the efficacy of closed-loop control of anesthesia using bispectral index (BIS) as the controlled variable. Model-based and proportional-integral-derivative (PID) controllers outperform manual control. We investigated the application of reinforcement learning (RL), an intelligent systems control method, to closed-loop BIS-guided, propofol-induced hypnosis in simulated intraoperative patients. We also compared the performance of the RL agent against that of a conventional PID controller.

METHODS

The RL and PID controllers were evaluated during propofol induction and maintenance of hypnosis. The patient-hypnotic episodes were designed to challenge both controllers with varying degrees of interindividual variation and noxious surgical stimulation. Each controller was tested in 1000 simulated patients, and control performance was assessed by calculating the median performance error (MDPE), median absolute performance error (MDAPE), Wobble, and Divergence for each controller group. A separate analysis was performed for the induction and maintenance phases of hypnosis.

RESULTS

During maintenance, RL control demonstrated an MDPE of -1% and an MDAPE of 3.75%, with 80% of the time at BIS(target) ± 5. The PID controller yielded a MDPE of -8.5% and an MDAPE of 8.6%, with 57% of the time at BIS(target) ± 5. In comparison, the MDAPE in the worst-controlled patient of the RL group was observed to be almost half that of the worst-controlled patient in the PID group.

CONCLUSIONS

When compared with the PID controller, RL control resulted in slower induction but less overshoot and faster attainment of steady state. No difference in interindividual patient variation and noxious destabilizing challenge on control performance was observed between the 2 patient groups.

摘要

背景

研究已经证明了使用双频谱指数(BIS)作为控制变量的麻醉闭环控制的有效性。基于模型和比例积分微分(PID)控制器优于手动控制。我们研究了强化学习(RL)作为一种智能系统控制方法,在模拟手术患者中的闭环 BIS 指导下、异丙酚诱导催眠中的应用。我们还比较了 RL 代理与传统 PID 控制器的性能。

方法

在异丙酚诱导和催眠维持期间评估 RL 和 PID 控制器。设计了患者催眠发作,以不同程度的个体间变异性和有害手术刺激来挑战两个控制器。每个控制器在 1000 个模拟患者中进行测试,并通过计算每个控制器组的中位数性能误差(MDPE)、中位数绝对性能误差(MDAPE)、摆动和发散来评估控制性能。分别对诱导和维持阶段的催眠进行了分析。

结果

在维持阶段,RL 控制的 MDPE 为-1%,MDAPE 为 3.75%,80%的时间在 BIS(目标)±5 以内。PID 控制器的 MDPE 为-8.5%,MDAPE 为 8.6%,57%的时间在 BIS(目标)±5 以内。相比之下,RL 组中控制最差的患者的 MDAPE 几乎是 PID 组中控制最差的患者的一半。

结论

与 PID 控制器相比,RL 控制的诱导速度较慢,但超调量较小,达到稳定状态的速度较快。在控制性能方面,两个患者组之间没有观察到个体间患者变异和有害失稳挑战的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验