Suppr超能文献

通过深度强化学习实现个性化镇静管理

Patient-Specific Sedation Management via Deep Reinforcement Learning.

作者信息

Eghbali Niloufar, Alhanai Tuka, Ghassemi Mohammad M

机构信息

Human Augmentation and Artificial Intelligence Laboratory, Department of Computer Science, Michigan State University, East Lansing, MI, United States.

Laboratory for Computer-Human Intelligence, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.

出版信息

Front Digit Health. 2021 Mar 31;3:608893. doi: 10.3389/fdgth.2021.608893. eCollection 2021.

Abstract

Developing reliable medication dosing guidelines is challenging because individual dose-response relationships are mitigated by both static (e. g., demographic) and dynamic factors (e.g., kidney function). In recent years, several data-driven medication dosing models have been proposed for sedatives, but these approaches have been limited in their ability to assess interindividual differences and compute individualized doses. The primary objective of this study is to develop an individualized framework for sedative-hypnotics dosing. Using publicly available data (1,757 patients) from the MIMIC IV intensive care unit database, we developed a sedation management agent using deep reinforcement learning. More specifically, we modeled the sedative dosing problem as a Markov Decision Process and developed an RL agent based on a deep deterministic policy gradient approach with a prioritized experience replay buffer to find the optimal policy. We assessed our method's ability to jointly learn an optimal personalized policy for propofol and fentanyl, which are among commonly prescribed sedative-hypnotics for intensive care unit sedation. We compared our model's medication performance against the recorded behavior of clinicians on unseen data. Experimental results demonstrate that our proposed model would assist clinicians in making the right decision based on patients' evolving clinical phenotype. The RL agent was 8% better at managing sedation and 26% better at managing mean arterial compared to the clinicians' policy; a two-sample -test validated that these performance improvements were statistically significant ( < 0.05). The results validate that our model had better performance in maintaining control variables within their target range, thereby jointly maintaining patients' health conditions and managing their sedation.

摘要

制定可靠的药物剂量指南具有挑战性,因为个体剂量反应关系会受到静态因素(如人口统计学因素)和动态因素(如肾功能)的影响。近年来,已经针对镇静剂提出了几种数据驱动的药物剂量模型,但这些方法在评估个体差异和计算个体化剂量的能力方面存在局限性。本研究的主要目的是开发一种用于镇静催眠药物给药的个体化框架。利用多中心重症医学信息数据库(MIMIC-IV)重症监护病房数据库中的公开数据(1757名患者),我们使用深度强化学习开发了一种镇静管理智能体。更具体地说,我们将镇静剂给药问题建模为马尔可夫决策过程,并基于深度确定性策略梯度方法和优先经验回放缓冲区开发了一种强化学习智能体,以找到最优策略。我们评估了我们的方法联合学习丙泊酚和芬太尼最优个性化策略的能力,这两种药物是重症监护病房常用的镇静催眠药物。我们将我们模型的用药表现与临床医生在未见过的数据上的记录行为进行了比较。实验结果表明,我们提出的模型将帮助临床医生根据患者不断变化的临床表型做出正确决策。与临床医生的策略相比,强化学习智能体在管理镇静方面提高了8%,在管理平均动脉压方面提高了26%;双样本检验验证了这些性能提升具有统计学意义(<0.05)。结果验证了我们的模型在将控制变量维持在目标范围内方面具有更好的性能,从而共同维持患者的健康状况并管理他们的镇静。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1873/8521809/c314e04a7af4/fdgth-03-608893-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验