Suppr超能文献

Influence of increased metabolic rate on [13C]bicarbonate washout kinetics.

作者信息

Barstow T J, Cooper D M, Sobel E M, Landaw E M, Epstein S

机构信息

Department of Medicine, Harbor-UCLA Medical Center, Torrance 90509.

出版信息

Am J Physiol. 1990 Jul;259(1 Pt 2):R163-71. doi: 10.1152/ajpregu.1990.259.1.R163.

Abstract

The effect of changes in metabolic rate on the dynamics of CO2 exchange among its various compartments in the human body is not well understood. We examined CO2 dynamics in six healthy male subjects using an intravenous bolus of [13C]bicarbonate. Subjects were studied while resting, during light exercise [50% of the lactate threshold (LT), 3-4 times resting O2 uptake (VO2)], and during moderate exercise (95% of the LT, 6 times resting VO2). The sum of three exponential terms well described the washout of 13CO2 in exhaled breath both at rest and during each exercise level despite substantial increases in metabolic rate accompanying the exercise studies. Average recovery of 13C label rose from 67% during rest to 80% during light and moderate exercise (P less than 0.01). The estimate of CO2 elimination (VCO2) calculated from the washout parameters and corrected for recovery was in very good agreement with the VCO2 directly measured simultaneously breath by breath (r = 0.993, SE for VCO2 = 0.079 l/min). By use of a three-compartment mammillary model, the quantity of CO2 in the central pool (Q1) doubled from rest to light exercise (233 +/- 60 to 479 +/- 76 mmol, P less than 0.01) but did not change further with moderate exercise (458 +/- 74 mmol). Rate constants for exchange between pools and for irreversible loss from the system tended to increase with metabolic rate, but there was large variation in the responses. We conclude that the compartmental dynamics of CO2 transport and storage are very sensitive to changes in metabolic rate induced by exercise.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验