文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过表面化学设计实现低毒和安全的纳米材料,包括碳纳米管、富勒烯、金属富勒烯和石墨烯。

Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.

机构信息

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), National Center for Nanosciences and Technology of China, Beijing, 100049, China.

出版信息

Nanoscale. 2011 Feb;3(2):362-82. doi: 10.1039/c0nr00647e. Epub 2010 Dec 14.


DOI:10.1039/c0nr00647e
PMID:21157592
Abstract

The toxicity grade for a bulk material can be approximately determined by three factors (chemical composition, dose, and exposure route). However, for a nanomaterial it depends on more than ten factors. Interestingly, some nano-factors (like huge surface adsorbability, small size, etc.) that endow nanomaterials with new biomedical functions are also potential causes leading to toxicity or damage to the living organism. Is it possible to create safe nanomaterials if such a number of complicated factors need to be regulated? We herein try to find answers to this important question. We first discuss chemical processes that are applicable for nanosurface modifications, in order to improve biocompatibility, regulate ADME, and reduce the toxicity of carbon nanomaterials (carbon nanotubes, fullerenes, metallofullerenes, and graphenes). Then the biological/toxicological effects of surface-modified and unmodified carbon nanomaterials are comparatively discussed from two aspects: the lowered toxic responses or the enhanced biomedical functions. We summarize the eight biggest challenges in creating low-toxicity and safer nanomaterials and some significant topics of future research needs: to find out safer nanofactors; to establish controllable surface modifications and simpler chemistries for low-toxic nanomaterials; to explore the nanotoxicity mechanisms; to justify the validity of current toxicological theories in nanotoxicology; to create standardized nanomaterials for toxicity tests; to build theoretical models for cellular and molecular interactions of nanoparticles; and to establish systematical knowledge frameworks for nanotoxicology.

摘要

块状材料的毒性等级可以通过三个因素(化学组成、剂量和暴露途径)来大致确定。然而,对于纳米材料,它取决于十多个因素。有趣的是,一些纳米因素(如巨大的表面吸附能力、小尺寸等)赋予纳米材料新的生物医学功能,也可能是导致生物机体毒性或损伤的潜在原因。如果需要调节如此多复杂的因素,是否有可能创造出安全的纳米材料?我们在此试图找到这个重要问题的答案。我们首先讨论适用于纳米表面修饰的化学过程,以提高生物相容性、调节 ADME,并降低碳纳米材料(碳纳米管、富勒烯、金属富勒烯和石墨烯)的毒性。然后,从降低毒性反应或增强生物医学功能两个方面比较讨论了经过表面修饰和未修饰的碳纳米材料的生物学/毒理学效应。我们总结了创造低毒性和更安全的纳米材料的八大挑战以及一些未来研究需要的重要课题:寻找更安全的纳米因素;建立用于低毒性纳米材料的可控表面修饰和更简单的化学方法;探索纳米毒性机制;证明当前毒理学理论在纳米毒理学中的有效性;为毒性测试创建标准化的纳米材料;建立纳米颗粒与细胞和分子相互作用的理论模型;以及建立纳米毒理学的系统知识框架。

相似文献

[1]
Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.

Nanoscale. 2010-12-14

[2]
Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.

Drug Metab Rev. 2014-5

[3]
Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species.

Chem Asian J. 2013-7-23

[4]
The carcinogenic potential of nanomaterials, their release from products and options for regulating them.

Int J Hyg Environ Health. 2010-12-17

[5]
Toxicity evaluations of various carbon nanomaterials.

Dent Mater J. 2011-5-20

[6]
Fullerenes, carbon nanotubes, and graphene for molecular electronics.

Top Curr Chem. 2012

[7]
Toxicological Aspects of Carbon Nanotubes, Fullerenes and Graphenes.

Curr Pharm Des. 2021

[8]
Evaluating the toxicity of selected types of nanochemicals.

Rev Environ Contam Toxicol. 2012

[9]
Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems.

Chem Biol Interact. 2019-5-1

[10]
Carbon nanomaterials: Biologically active fullerene derivatives.

Srp Arh Celok Lek. 2016

引用本文的文献

[1]
Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights.

APL Bioeng. 2025-3-13

[2]
Aminofullerenes as targeted inhibitors of EGFR: from pancreatic cancer inhibitors to . Toxicology.

Nanomedicine (Lond). 2025-3

[3]
Ligand-conjugated multiwalled carbon nanotubes for cancer targeted drug delivery.

Front Pharmacol. 2024-7-25

[4]
Carbon Nanotubes and Graphene Materials as Xenobiotics in Living Systems: Is There a Consensus on Their Safety?

J Xenobiot. 2023-12-1

[5]
Enhancing Skin Cancer Immunotheranostics and Precision Medicine through Functionalized Nanomodulators and Nanosensors: Recent Development and Prospects.

Int J Mol Sci. 2023-2-9

[6]
State-of-the-Art of Polymer/Fullerene C Nanocomposite Membranes for Water Treatment: Conceptions, Structural Diversity and Topographies.

Membranes (Basel). 2022-12-25

[7]
Fiber optic magnetic field sensor using Co doped ZnO nanorods as cladding.

RSC Adv. 2018-5-18

[8]
Nano Silver-Induced Toxicity and Associated Mechanisms.

Int J Nanomedicine. 2022

[9]
Modulation of Conductivity of Alginate Hydrogels Containing Reduced Graphene Oxide through the Addition of Proteins.

Pharmaceutics. 2021-9-15

[10]
Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells.

Front Chem. 2021-2-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索