CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), National Center for Nanosciences and Technology of China, Beijing, 100049, China.
Nanoscale. 2011 Feb;3(2):362-82. doi: 10.1039/c0nr00647e. Epub 2010 Dec 14.
The toxicity grade for a bulk material can be approximately determined by three factors (chemical composition, dose, and exposure route). However, for a nanomaterial it depends on more than ten factors. Interestingly, some nano-factors (like huge surface adsorbability, small size, etc.) that endow nanomaterials with new biomedical functions are also potential causes leading to toxicity or damage to the living organism. Is it possible to create safe nanomaterials if such a number of complicated factors need to be regulated? We herein try to find answers to this important question. We first discuss chemical processes that are applicable for nanosurface modifications, in order to improve biocompatibility, regulate ADME, and reduce the toxicity of carbon nanomaterials (carbon nanotubes, fullerenes, metallofullerenes, and graphenes). Then the biological/toxicological effects of surface-modified and unmodified carbon nanomaterials are comparatively discussed from two aspects: the lowered toxic responses or the enhanced biomedical functions. We summarize the eight biggest challenges in creating low-toxicity and safer nanomaterials and some significant topics of future research needs: to find out safer nanofactors; to establish controllable surface modifications and simpler chemistries for low-toxic nanomaterials; to explore the nanotoxicity mechanisms; to justify the validity of current toxicological theories in nanotoxicology; to create standardized nanomaterials for toxicity tests; to build theoretical models for cellular and molecular interactions of nanoparticles; and to establish systematical knowledge frameworks for nanotoxicology.
块状材料的毒性等级可以通过三个因素(化学组成、剂量和暴露途径)来大致确定。然而,对于纳米材料,它取决于十多个因素。有趣的是,一些纳米因素(如巨大的表面吸附能力、小尺寸等)赋予纳米材料新的生物医学功能,也可能是导致生物机体毒性或损伤的潜在原因。如果需要调节如此多复杂的因素,是否有可能创造出安全的纳米材料?我们在此试图找到这个重要问题的答案。我们首先讨论适用于纳米表面修饰的化学过程,以提高生物相容性、调节 ADME,并降低碳纳米材料(碳纳米管、富勒烯、金属富勒烯和石墨烯)的毒性。然后,从降低毒性反应或增强生物医学功能两个方面比较讨论了经过表面修饰和未修饰的碳纳米材料的生物学/毒理学效应。我们总结了创造低毒性和更安全的纳米材料的八大挑战以及一些未来研究需要的重要课题:寻找更安全的纳米因素;建立用于低毒性纳米材料的可控表面修饰和更简单的化学方法;探索纳米毒性机制;证明当前毒理学理论在纳米毒理学中的有效性;为毒性测试创建标准化的纳米材料;建立纳米颗粒与细胞和分子相互作用的理论模型;以及建立纳米毒理学的系统知识框架。
Int J Hyg Environ Health. 2010-12-17
Dent Mater J. 2011-5-20
Top Curr Chem. 2012
Curr Pharm Des. 2021
Rev Environ Contam Toxicol. 2012
Chem Biol Interact. 2019-5-1
Srp Arh Celok Lek. 2016
Nanomedicine (Lond). 2025-3
Front Pharmacol. 2024-7-25
Int J Nanomedicine. 2022
Front Chem. 2021-2-10