Suppr超能文献

多剂量干预研究中动力学数据的非靶向代谢物发现。

Untargeted metabolite discovery in kinetic data from multi-dose intervention studies.

机构信息

Unilever Research and Development, Advanced Measurement and Data Modelling, Vlaardingen, The Netherlands.

出版信息

J Chromatogr A. 2011 May 27;1218(21):3337-44. doi: 10.1016/j.chroma.2010.11.023. Epub 2010 Nov 18.

Abstract

A new strategy for biomarker discovery is presented that is based on multi-dose kinetic metabolomics data. Gas chromatography-mass spectrometry (GC-MS) data sets recorded in the full scan mode are scanned for compounds showing a meaningful trend following the different doses and sampling time points. From a biological point of view, a meaningful trend denotes a compound that responds similarly at all doses and follows a smooth trend along the time points. This type of information can be used to distinguish relevant metabolites from those compounds not following the expected trends. The method is based on analysing the time and dosage trends of each compound via principal component analysis. As only local information is analysed at a time (meaning no correlation with other metabolites is taken into account), the proposed model flags relevant metabolites even if their trend is different from that of any other compound. The new method is therefore an attractive way to reduce the long list of detected compounds in a metabolomics sample set to include only those having the expected smooth time profile that is common for all doses. The new strategy is tested on a sample set obtained from a gut fermentation study of a polyphenol-rich diet. For this study, the initial list of over 25,000 potentially interesting features was reduced to less than 250, thus significantly reducing the expensive and time-consuming manual examination.

摘要

提出了一种新的生物标志物发现策略,该策略基于多剂量动力学代谢组学数据。对以全扫描模式记录的气相色谱-质谱(GC-MS)数据集进行扫描,以查找在不同剂量和采样时间点后呈现出有意义趋势的化合物。从生物学的角度来看,有意义的趋势表示在所有剂量下都具有相似反应并沿时间点呈现平滑趋势的化合物。这种信息可用于区分相关代谢物与那些不符合预期趋势的化合物。该方法基于通过主成分分析(PCA)分析每个化合物的时间和剂量趋势。由于一次仅分析局部信息(即不考虑与其他代谢物的相关性),因此即使其趋势与任何其他化合物不同,所提出的模型也会标记相关代谢物。因此,这种新方法是一种很有吸引力的方法,可以将代谢组学样本集中检测到的化合物列表缩短,仅包括那些具有所有剂量共有的预期平滑时间分布的化合物。该新策略在多酚丰富饮食的肠道发酵研究中获得的样本集上进行了测试。对于这项研究,将最初的超过 25,000 个潜在有趣特征的列表减少到不到 250 个,从而大大减少了昂贵且耗时的手动检查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验