Bermel Peter, Ghebrebrhan Michael, Chan Walker, Yeng Yi Xiang, Araghchini Mohammad, Hamam Rafif, Marton Christopher H, Jensen Klavs F, Soljačić Marin, Joannopoulos John D, Johnson Steven G, Celanovic Ivan
Massachusetts Institute of Technology, Cambridge, 02139, USA.
Opt Express. 2010 Sep 13;18 Suppl 3:A314-34. doi: 10.1364/OE.18.00A314.
Despite their great promise, small experimental thermophotovoltaic (TPV) systems at 1000 K generally exhibit extremely low power conversion efficiencies (approximately 1%), due to heat losses such as thermal emission of undesirable mid-wavelength infrared radiation. Photonic crystals (PhC) have the potential to strongly suppress such losses. However, PhC-based designs present a set of non-convex optimization problems requiring efficient objective function evaluation and global optimization algorithms. Both are applied to two example systems: improved micro-TPV generators and solar thermal TPV systems. Micro-TPV reactors experience up to a 27-fold increase in their efficiency and power output; solar thermal TPV systems see an even greater 45-fold increase in their efficiency (exceeding the Shockley-Quiesser limit for a single-junction photovoltaic cell).
尽管具有巨大的潜力,但工作在1000K的小型实验性热光伏(TPV)系统通常表现出极低的功率转换效率(约1%),这是由于存在诸如不良中波长红外辐射的热发射等热损失。光子晶体(PhC)有潜力极大地抑制此类损失。然而,基于光子晶体的设计存在一系列非凸优化问题,需要高效的目标函数评估和全局优化算法。这两者都应用于两个示例系统:改进的微型TPV发电机和太阳能热TPV系统。微型TPV反应堆的效率和功率输出提高了27倍;太阳能热TPV系统的效率提高幅度更大,达到45倍(超过了单结光伏电池的肖克利-奎塞尔极限)。