Chester David, Bermel Peter, Joannopoulos John D, Soljacic Marin, Celanovic Ivan
Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.
Opt Express. 2011 May 9;19 Suppl 3:A245-57. doi: 10.1364/OE.19.00A245.
Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To improve these critical components, we study a class of materials known as cermets. While our approach is completely general, the most promising cermet candidate combines nanoparticles of silica and tungsten. We find that 4-layer silica-tungsten cermet selective solar absorbers can achieve thermal transfer efficiencies of 84.3% at 400 K, and 75.59% at 1000 K, exceeding comparable literature values. Three layer silica-tungsten cermets can also be used as selective emitters for InGaAsSb-based thermophotovoltaic systems, with projected overall system energy conversion efficiencies of 10.66% at 1000 K using realistic design parameters. The marginal benefit of adding more than 4 cermet layers is small (less than 0.26%, relative).
太阳能热、热电和热光伏(TPV)系统具有很高的理论最大效率;但实验系统由于选择性太阳能吸收器和TPV选择性发射体的损耗而未达到该效率。为了改进这些关键部件,我们研究了一类称为金属陶瓷的材料。虽然我们的方法具有通用性,但最有前景的金属陶瓷候选材料是二氧化硅和钨的纳米颗粒组合。我们发现,4层二氧化硅-钨金属陶瓷选择性太阳能吸收器在400K时可实现84.3%的热传递效率,在1000K时为75.59%,超过了文献中的可比数值。三层二氧化硅-钨金属陶瓷也可用作基于InGaAsSb的热光伏系统的选择性发射体,使用实际设计参数时,在1000K下预计的整体系统能量转换效率为10.66%。添加超过4层金属陶瓷层的边际效益很小(相对小于0.26%)。