Suppr超能文献

一种基于立体脑电图(sEEG)和颅内脑电图(iEEG)数据预测癫痫发作的多帧网络模型。

A multi-frame network model for predicting seizure based on sEEG and iEEG data.

作者信息

Lu Liangfu, Zhang Feng, Wu Yubo, Ma Songnan, Zhang Xin, Ni Guangjian

机构信息

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

School of Mathematics, Tianjin University, Tianjin, China.

出版信息

Front Comput Neurosci. 2022 Nov 14;16:1059565. doi: 10.3389/fncom.2022.1059565. eCollection 2022.

Abstract

INTRODUCTION

Analysis and prediction of seizures by processing the EEG signals could assist doctors in accurate diagnosis and improve the quality of the patient's life with epilepsy. Nowadays, seizure prediction models based on deep learning have become one of the most popular topics in seizure studies, and many models have been presented. However, the prediction results are strongly related to the various complicated pre-processing strategies of models, and cannot be directly applied to raw data in real-time applications. Moreover, due to the inherent deficiencies in single-frame models and the non-stationary nature of EEG signals, the generalization ability of the existing model frameworks is generally poor.

METHODS

Therefore, we proposed an end-to-end seizure prediction model in this paper, where we designed a multi-frame network for automatic feature extraction and classification. Instance and sequence-based frames are proposed in our approach, which can help us simultaneously extract features of different modes for further classification. Moreover, complicated pre-processing steps are not included in our model, and the novel frames can be directly applied to the raw data. It should be noted that the approaches proposed in the paper can be easily used as the general model which has been validated and compared with existing model frames.

RESULTS

The experimental results showed that the multi-frame network proposed in this paper was superior to the existing model frame in accuracy, sensitivity, specificity, F1-score, and AUC in the classification performance of EEG signals.

DISCUSSION

Our results provided a new research idea for this field. Researchers can further integrate the idea of the multi-frame network into the state-of-the-art single-frame seizure prediction models and then achieve better results.

摘要

引言

通过处理脑电图(EEG)信号来分析和预测癫痫发作,有助于医生进行准确诊断,并提高癫痫患者的生活质量。如今,基于深度学习的癫痫发作预测模型已成为癫痫研究中最热门的话题之一,并且已经提出了许多模型。然而,预测结果与模型的各种复杂预处理策略密切相关,无法直接应用于实时应用中的原始数据。此外,由于单帧模型的固有缺陷以及EEG信号的非平稳特性,现有模型框架的泛化能力普遍较差。

方法

因此,我们在本文中提出了一种端到端的癫痫发作预测模型,其中我们设计了一个多帧网络用于自动特征提取和分类。我们的方法中提出了基于实例和序列的帧,这可以帮助我们同时提取不同模式的特征以进行进一步分类。此外,我们的模型不包括复杂的预处理步骤,并且新颖的帧可以直接应用于原始数据。需要注意的是,本文提出的方法可以很容易地用作已得到验证并与现有模型框架进行比较的通用模型。

结果

实验结果表明,本文提出的多帧网络在EEG信号分类性能的准确性、敏感性、特异性、F1分数和AUC方面优于现有模型框架。

讨论

我们的结果为该领域提供了新的研究思路。研究人员可以进一步将多帧网络的思想整合到最先进的单帧癫痫发作预测模型中,从而取得更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9354/9701721/507423977b82/fncom-16-1059565-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验