Suppr超能文献

通过拟合多个传统结构方程模型进行有限正态混合结构方程模型分析。

Finite Normal Mixture SEM Analysis by Fitting Multiple Conventional SEM Models.

作者信息

Yuan Ke-Hai, Bentler Peter M

机构信息

University of Notre Dame.

出版信息

Sociol Methodol. 2010 Aug;40(1):191-245. doi: 10.1111/j.1467-9531.2010.01224.x.

Abstract

This paper proposes a two-stage maximum likelihood (ML) approach to normal mixture structural equation modeling (SEM), and develops statistical inference that allows distributional misspecification. Saturated means and covariances are estimated at stage-1 together with a sandwich-type covariance matrix. These are used to evaluate structural models at stage-2. Techniques accumulated in the conventional SEM literature for model diagnosis and evaluation can be used to study the model structure for each component. Examples show that the two-stage ML approach leads to correct or nearly correct models even when the normal mixture assumptions are violated and initial models are misspecified. Compared to single-stage ML, two-stage ML avoids the confounding effect of model specification and the number of components, and is computationally more efficient. Monte-Carlo results indicate that two-stage ML loses only minimal efficiency under the condition where single-stage ML performs best. Monte-Carlo results also indicate that the commonly used model selection criterion BIC is more robust to distribution violations for the saturated model than that for a structural model at moderate sample sizes. The proposed two-stage ML approach is also extremely flexible in modeling different components with different models. Potential new developments in the mixture modeling literature can be easily adapted to study issues with normal mixture SEM.

摘要

本文提出了一种用于正态混合结构方程模型(SEM)的两阶段最大似然(ML)方法,并开展了允许分布错误设定的统计推断。在第一阶段估计饱和均值和协方差以及一个三明治型协方差矩阵。这些用于在第二阶段评估结构模型。传统SEM文献中积累的用于模型诊断和评估的技术可用于研究每个成分的模型结构。示例表明,即使正态混合假设被违反且初始模型被错误设定,两阶段ML方法也能得出正确或近乎正确的模型。与单阶段ML相比,两阶段ML避免了模型设定和成分数量的混杂效应,并且计算效率更高。蒙特卡罗结果表明,在单阶段ML表现最佳的条件下,两阶段ML仅损失极小的效率。蒙特卡罗结果还表明,在中等样本量下,常用的模型选择标准BIC对饱和模型的分布违反情况比结构模型更具鲁棒性。所提出的两阶段ML方法在使用不同模型对不同成分进行建模时也极具灵活性。混合建模文献中的潜在新进展可轻松适用于研究正态混合SEM的问题。

相似文献

10
On specification tests for composite likelihood inference.关于复合似然推断的规格检验。
Biometrika. 2020 Dec;107(4):907-917. doi: 10.1093/biomet/asaa039. Epub 2020 Jun 14.

引用本文的文献

3
A five-factor model of perseverative thought.五因素模式的固执思维。
J Psychopathol Clin Sci. 2022 Apr;131(3):235-252. doi: 10.1037/abn0000737. Epub 2022 Feb 7.
8
Model Fit Estimation for Multilevel Structural Equation Models.多层次结构方程模型的模型拟合估计
Struct Equ Modeling. 2020;27(2):318-329. doi: 10.1080/10705511.2019.1620109. Epub 2019 Jul 2.

本文引用的文献

2
Structural Equation Modeling with Small Samples: Test Statistics.小样本结构方程模型:检验统计量
Multivariate Behav Res. 1999 Apr 1;34(2):181-97. doi: 10.1207/S15327906Mb340203.
3
Two simple approximations to the distributions of quadratic forms.两种二次型分布的简单逼近。
Br J Math Stat Psychol. 2010 May;63(Pt 2):273-91. doi: 10.1348/000711009X449771. Epub 2009 Sep 29.
9
Normal theory based test statistics in structural equation modelling.结构方程建模中基于正态理论的检验统计量
Br J Math Stat Psychol. 1998 Nov;51 ( Pt 2):289-309. doi: 10.1111/j.2044-8317.1998.tb00682.x.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验