Suppr超能文献

错误设定的结构方程模型中的非中心卡方分布:蒙特卡罗模拟的有限样本结果

The Noncentral Chi-square Distribution in Misspecified Structural Equation Models: Finite Sample Results from a Monte Carlo Simulation.

作者信息

Curran Patrick J, Bollen Kenneth A, Paxton Pamela, Kirby James, Chen Feinian

出版信息

Multivariate Behav Res. 2002 Jan 1;37(1):1-36. doi: 10.1207/S15327906MBR3701_01.

Abstract

The noncentral chi-square distribution plays a key role in structural equation modeling (SEM). The likelihood ratio test statistic that accompanies virtually all SEMs asymptotically follows a noncentral chi-square under certain assumptions relating to misspecification and multivariate distribution. Many scholars use the noncentral chi-square distribution in the construction of fit indices, such as Steiger and Lind's (1980) Root Mean Square Error of Approximation (RMSEA) or the family of baseline fit indices (e.g., RNI, CFI), and for the computation of statistical power for model hypothesis testing. Despite this wide use, surprisingly little is known about the extent to which the test statistic follows a noncentral chi-square in applied research. Our study examines several hypotheses about the suitability of the noncentral chi-square distribution for the usual SEM test statistic under conditions commonly encountered in practice. We designed Monte Carlo computer simulation experiments to empirically test these research hypotheses. Our experimental conditions included seven sample sizes ranging from 50 to 1000, and three distinct model types, each with five specifications ranging from a correct model to the severely misspecified uncorrelated baseline model. In general, we found that for models with small to moderate misspecification, the noncentral chi-square distribution is well approximated when the sample size is large (e.g., greater than 200), but there was evidence of bias in both mean and variance in smaller samples. A key finding was that the test statistics for the uncorrelated variable baseline model did not follow the noncentral chi-square distribution for any model type across any sample size. We discuss the implications of our findings for the SEM fit indices and power estimation procedures that are based on the noncentral chi-square distribution as well as potential directions for future research.

摘要

非中心卡方分布在结构方程模型(SEM)中起着关键作用。在与模型误设和多元分布相关的某些假设下,几乎所有结构方程模型所伴随的似然比检验统计量渐近地服从非中心卡方分布。许多学者在构建拟合指数时使用非中心卡方分布,例如Steiger和Lind(1980)的近似均方根误差(RMSEA)或基线拟合指数族(如RNI、CFI),以及用于模型假设检验的统计功效计算。尽管广泛使用,但令人惊讶的是,在应用研究中对于检验统计量在多大程度上服从非中心卡方分布知之甚少。我们的研究考察了几个关于在实际中常见条件下非中心卡方分布对常用结构方程模型检验统计量适用性的假设。我们设计了蒙特卡罗计算机模拟实验来实证检验这些研究假设。我们的实验条件包括从50到1000的七个样本量,以及三种不同的模型类型,每种模型类型有五个从正确模型到严重误设的不相关基线模型的规格。总体而言,我们发现对于误设程度较小到中等的模型,当样本量较大(如大于200)时,非中心卡方分布能得到很好的近似,但在较小样本中存在均值和方差偏差的证据。一个关键发现是,对于任何模型类型和任何样本量,不相关变量基线模型的检验统计量都不服从非中心卡方分布。我们讨论了我们的发现对基于非中心卡方分布的结构方程模型拟合指数和功效估计程序的影响,以及未来研究的潜在方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验