Institute of Psychology, Department of Research Methods and Evaluation, Goethe University Frankfurt, Theodor-W.-Adorno-Platz 6, 60629, Frankfurt am Main, Germany.
Behav Res Methods. 2024 Dec;56(8):8955-8991. doi: 10.3758/s13428-024-02507-z. Epub 2024 Oct 1.
Closed-form (asymptotic) analytical power estimation is only available for limited classes of models, requiring correct model specification for most applications. Simulation-based power estimation can be applied in almost all scenarios where data following the model can be estimated. However, a general framework for calculating the required sample sizes for given power rates is still lacking. We propose a new model-implied simulation-based power estimation (MSPE) method for the z-test that makes use of the asymptotic normality property of estimates of a wide class of estimators, the M-estimators, and give theoretical justification for the approach. M-estimators include maximum-likelihood, least squares estimates and limited information estimators, but also estimators used for misspecified models, hence, the new simulation-based power modeling method is widely applicable. The MSPE employs a parametric model to describe the relationship between power and sample size, which can then be used to determine the required sample size for a specified power rate. We highlight its performance in linear and nonlinear structural equation models (SEM) for correctly specified models and models under distributional misspecification. Simulation results suggest that the new power modeling method is unbiased and shows good performance with regard to root mean squared error and type I error rates for the predicted required sample sizes and predicted power rates, outperforming alternative approaches, such as the naïve approach of selecting a discrete selection of sample sizes with linear interpolation of power or simple logistic regression approaches. The MSPE appears to be a valuable tool to estimate power for models without an (asymptotic) analytical power estimation.
封闭形式(渐近)分析功效估计仅适用于有限的模型类别,对于大多数应用,需要正确的模型规范。基于模拟的功效估计可应用于几乎所有可以估计数据符合模型的场景。然而,仍然缺乏用于为给定功效率计算所需样本大小的通用框架。我们提出了一种新的基于模拟的模型隐含功效估计(MSPE)方法,用于 z 检验,该方法利用了广泛的一类估计量(M 估计量)的估计值的渐近正态性,为该方法提供了理论依据。M 估计量包括最大似然估计、最小二乘估计和有限信息估计量,但也包括用于指定模型的估计量,因此,新的基于模拟的功效建模方法具有广泛的适用性。MSPE 使用参数模型来描述功效和样本大小之间的关系,然后可以使用该模型来确定指定功效率所需的样本大小。我们强调了它在正确指定模型和分布指定错误模型的线性和非线性结构方程模型(SEM)中的性能。模拟结果表明,新的功效建模方法是无偏的,并且在预测所需样本大小和预测功效率的均方根误差和 I 型错误率方面表现良好,优于替代方法,例如选择具有线性内插功效的离散样本大小的简单方法或简单逻辑回归方法。MSPE 似乎是一种用于估计没有(渐近)分析功效估计的模型功效的有用工具。