Suppr超能文献

2010 生物材料大挑战专家组

2010 Panel on the biomaterials grand challenges.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

出版信息

J Biomed Mater Res A. 2011 Feb;96(2):275-87. doi: 10.1002/jbm.a.32969. Epub 2010 Nov 29.

Abstract

In 2009, the National Academy for Engineering issued the Grand Challenges for Engineering in the 21st Century comprised of 14 technical challenges that must be addressed to build a healthy, profitable, sustainable, and secure global community (http://www.engineeringchallenges.org). Although crucial, none of the NEA Grand Challenges adequately addressed the challenges that face the biomaterials community. In response to the NAE Grand Challenges, Monty Reichert of Duke University organized a panel entitled Grand Challenges in Biomaterials at the at the 2010 Society for Biomaterials Annual Meeting in Seattle. Six members of the National Academies-Buddy Ratner, James Anderson, Allan Hoffman, Art Coury, Cato Laurencin, and David Tirrell-were asked to propose a grand challenge to the audience that, if met, would significantly impact the future of biomaterials and medical devices. Successfully meeting these challenges will speed the 60-plus year transition from commodity, off-the-shelf biomaterials to bioengineered chemistries, and biomaterial devices that will significantly advance our ability to address patient needs and also to create new market opportunities.

摘要

2009 年,美国国家工程院发布了 21 世纪的 14 项重大工程挑战,其中包括必须解决的 14 项技术挑战,以建立一个健康、盈利、可持续和安全的全球社区(http://www.engineeringchallenges.org)。尽管这些挑战至关重要,但 NEA 重大挑战中没有一个充分解决生物材料界面临的挑战。针对 NAE 重大挑战,杜克大学的蒙蒂·赖克特(Monty Reichert)在 2010 年西雅图举行的生物材料学会年会上组织了一个题为“生物材料重大挑战”的小组讨论。要求美国国家科学院的六位成员——巴迪·拉特纳(Buddy Ratner)、詹姆斯·安德森(James Anderson)、艾伦·霍夫曼(Allan Hoffman)、阿特·库里(Art Coury)、卡托·劳伦森(Cato Laurencin)和大卫·蒂雷尔(David Tirrell)——向观众提出一个重大挑战,如果能够实现,将对生物材料和医疗器械的未来产生重大影响。成功应对这些挑战将加速 60 多年来从商品、现成的生物材料向生物工程化学和生物材料设备的过渡,这将显著提高我们满足患者需求的能力,并创造新的市场机会。

相似文献

1
2010 Panel on the biomaterials grand challenges.
J Biomed Mater Res A. 2011 Feb;96(2):275-87. doi: 10.1002/jbm.a.32969. Epub 2010 Nov 29.
2
Forty years of the Japanese Society for Biomaterials looking back at my term of office as the chairperson.
J Biomed Mater Res A. 2019 May;107(5):930-932. doi: 10.1002/jbm.a.36621. Epub 2019 Mar 18.
3
2011 panel on developing a biomaterials curriculum.
J Biomed Mater Res A. 2012 Mar;100(3):802-16. doi: 10.1002/jbm.a.33242. Epub 2012 Jan 11.
4
How smart do biomaterials need to be? A translational science and clinical point of view.
Adv Drug Deliv Rev. 2013 Apr;65(4):581-603. doi: 10.1016/j.addr.2012.07.009. Epub 2012 Jul 20.
6
Summary of the National Conference on Challenges in Biomaterials Research jointly organized by VIT and CSIR-CECRI.
Int J Nanomedicine. 2015 Oct 1;10 Suppl 1(Suppl 1):1-5. doi: 10.2147/IJN.S80055. eCollection 2015.
7
The dangers in adopting a tissue-engineering-centric agenda: a president's perspective.
J Biomed Mater Res A. 2011 Feb;96(2):273-4. doi: 10.1002/jbm.a.32967. Epub 2010 Nov 29.
8
29th annual conference of the European Society for Biomaterials.
Biomater Sci. 2020 Jan 1;8(1):16-17. doi: 10.1039/c9bm90066g. Epub 2019 Dec 6.
9
Biomaterials: Been There, Done That, and Evolving into the Future.
Annu Rev Biomed Eng. 2019 Jun 4;21:171-191. doi: 10.1146/annurev-bioeng-062117-120940.
10
Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.
Acta Biomater. 2016 Sep 15;42:33-45. doi: 10.1016/j.actbio.2016.06.039. Epub 2016 Jul 25.

引用本文的文献

1
The paradigm shifts of periodontal regeneration strategy: From reparative manipulation to developmental engineering.
Bioact Mater. 2025 Mar 18;49:418-436. doi: 10.1016/j.bioactmat.2025.03.009. eCollection 2025 Jul.
2
Engineering of an Osteoinductive and Growth Factor-Free Injectable Bone-Like Microgel for Bone Regeneration.
Adv Healthc Mater. 2023 Apr;12(11):e2200976. doi: 10.1002/adhm.202200976. Epub 2023 Mar 7.
3
Biodegradable Polyphosphazenes for Regenerative Engineering.
J Mater Res. 2022 Apr;37(8):1417-1428. doi: 10.1557/s43578-022-00551-z. Epub 2022 Apr 18.
4
Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.
Regen Eng Transl Med. 2017 Mar;3(1):15-31. doi: 10.1007/s40883-016-0022-7. Epub 2017 Jan 30.
5
Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering.
PLoS One. 2017 Apr 3;12(4):e0174789. doi: 10.1371/journal.pone.0174789. eCollection 2017.
6
The Quest toward limb regeneration: a regenerative engineering approach.
Regen Biomater. 2016 Jun;3(2):123-5. doi: 10.1093/rb/rbw002. Epub 2016 Mar 5.
7
REGENERATIVE ENGINEERING: APPROACHES TO LIMB REGENERATION AND OTHER GRAND CHALLENGES.
Regen Eng Transl Med. 2015 Apr 1;1(1):1-3. doi: 10.1007/s40883-015-0006-z. Epub 2015 Dec 4.
8
Rapid and extensive collapse from electrically responsive macroporous hydrogels.
Adv Healthc Mater. 2014 Apr;3(4):500-7. doi: 10.1002/adhm.201300260. Epub 2013 Sep 12.
9
Short-term and long-term effects of orthopedic biodegradable implants.
J Long Term Eff Med Implants. 2011;21(2):93-122. doi: 10.1615/jlongtermeffmedimplants.v21.i2.10.

本文引用的文献

7
Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices.
Lab Chip. 2009 Jul 21;9(14):1997-2002. doi: 10.1039/b817754f. Epub 2009 Mar 16.
8
Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11099-104. doi: 10.1073/pnas.0800069105. Epub 2008 Aug 4.
9
Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering.
Biomaterials. 2008 Oct;29(30):4100-7. doi: 10.1016/j.biomaterials.2008.06.028. Epub 2008 Jul 21.
10
Tissue engineering of bone: material and matrix considerations.
J Bone Joint Surg Am. 2008 Feb;90 Suppl 1:36-42. doi: 10.2106/JBJS.G.01260.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验