Suppr超能文献

纤维微丝在维持间充质干细胞分化潜能的同时支持其生长。

Fibrin microthreads support mesenchymal stem cell growth while maintaining differentiation potential.

机构信息

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.

出版信息

J Biomed Mater Res A. 2011 Feb;96(2):301-12. doi: 10.1002/jbm.a.32978.

Abstract

We developed a method to produce discrete fibrin microthreads, which can be seeded with human mesenchymal stem cells (hMSCs) and used as a suture to enhance the efficiency and localization of cell delivery. To assess the efficacy of fibrin microthreads to support hMSC attachment, proliferation, and survival, microthreads (100 μm diameter per microthread) were bundled together, seeded with 50,000 hMSCs for 2 h, and cultured for 5 days. Cell density on microthread bundles increased over time in culture to a maximum average density of 731 ± 101 cells/mm(2) after 5 days. A LIVE/DEAD assay confirmed that the cells were viable, and Ki-67 staining verified hMSC proliferation. In addition, functional differentiation assays demonstrated that hMSCs cultured on microthreads retained their ability to differentiate into adipocytes and osteocytes. The results of this study demonstrate that fibrin microthreads support hMSC viability and proliferation, while maintaining their multipotency. We anticipate that these cell-seeded fibrin microthreads will serve as a platform technology to improve localized delivery and engraftment of viable cells to damaged tissue.

摘要

我们开发了一种生产离散纤维蛋白微丝的方法,可以将其接种人骨髓间充质干细胞(hMSCs)并用作缝线,以提高细胞递送的效率和定位。为了评估纤维蛋白微丝对支持 hMSC 附着、增殖和存活的功效,将微丝(每条微丝直径 100μm)捆扎在一起,接种 50000 个 hMSC 培养 2 小时,然后培养 5 天。在培养过程中,随着时间的推移,微丝束上的细胞密度增加,5 天后平均密度最高达到 731±101 个细胞/mm2。LIVE/DEAD 检测证实细胞是存活的,Ki-67 染色证实 hMSC 增殖。此外,功能分化试验表明,在微丝上培养的 hMSCs 保留了分化为脂肪细胞和成骨细胞的能力。这项研究的结果表明,纤维蛋白微丝支持 hMSC 的存活和增殖,同时保持其多能性。我们预计,这些细胞接种的纤维蛋白微丝将作为一种平台技术,改善对受损组织的有活力细胞的局部递送和植入。

相似文献

1
Fibrin microthreads support mesenchymal stem cell growth while maintaining differentiation potential.
J Biomed Mater Res A. 2011 Feb;96(2):301-12. doi: 10.1002/jbm.a.32978.
2
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.
4
Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells.
Tissue Eng Part A. 2010 May;16(5):1693-702. doi: 10.1089/ten.TEA.2009.0341.
5
A Novel Synthetic, Xeno-Free Biomimetic Surface for Serum-Free Expansion of Human Mesenchymal Stromal Cells.
Adv Biosyst. 2020 Aug;4(8):e2000008. doi: 10.1002/adbi.202000008. Epub 2020 Jul 23.
6
Crosslinking strategies facilitate tunable structural properties of fibrin microthreads.
Acta Biomater. 2012 Nov;8(11):4020-30. doi: 10.1016/j.actbio.2012.07.018. Epub 2012 Jul 21.
9
Adipose-derived stem cell delivery into collagen gels using chitosan microspheres.
Tissue Eng Part A. 2010 Apr;16(4):1369-84. doi: 10.1089/ten.TEA.2009.0404.

引用本文的文献

1
Biocompatibility of decellularized spinach leaves.
NPJ Biomed Innov. 2025;2(1):23. doi: 10.1038/s44385-025-00028-8. Epub 2025 Jul 2.
2
Immunomodulatory Delivery Materials for Tissue Repair.
Adv Healthc Mater. 2025 Jun 29:e2501400. doi: 10.1002/adhm.202501400.
4
Adipose-derived stromal cell secreted factors induce the elastogenesis cascade within 3D aortic smooth muscle cell constructs.
Matrix Biol Plus. 2019 Sep 4;4:100014. doi: 10.1016/j.mbplus.2019.100014. eCollection 2019 Nov.
5
Horseradish Peroxidase-Catalyzed Crosslinking of Fibrin Microthread Scaffolds.
Tissue Eng Part C Methods. 2020 Jun;26(6):317-331. doi: 10.1089/ten.TEC.2020.0083. Epub 2020 Jun 9.
6
Multi-Band Surgery for Repaired Tetralogy of Fallot Patients With Reduced Right Ventricle Ejection Fraction: A Pilot Study.
Front Physiol. 2020 Mar 19;11:198. doi: 10.3389/fphys.2020.00198. eCollection 2020.
7
Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment.
J Biomed Mater Res B Appl Biomater. 2020 Jul;108(5):2308-2319. doi: 10.1002/jbm.b.34566. Epub 2020 Jan 22.
8
Development of a Contractile Cardiac Fiber From Pluripotent Stem Cell Derived Cardiomyocytes.
Front Cardiovasc Med. 2018 Jun 11;5:52. doi: 10.3389/fcvm.2018.00052. eCollection 2018.
9
The Advancement of Biomaterials in Regulating Stem Cell Fate.
Stem Cell Rev Rep. 2018 Feb;14(1):43-57. doi: 10.1007/s12015-017-9764-y.
10
Designing Biopolymer Microthreads for Tissue Engineering and Regenerative Medicine.
Curr Stem Cell Rep. 2016 Jun;2(2):147-157. doi: 10.1007/s40778-016-0041-9. Epub 2016 Apr 15.

本文引用的文献

1
Repairing damaged myocardium: evaluating cells used for cardiac regeneration.
Curr Treat Options Cardiovasc Med. 2008 Feb;10(1):59-72. doi: 10.1007/s11936-008-0007-z.
2
Adipogenesis in nonadherent and adherent bone marrow stem cells grown in fibrin gel and in the presence of adult plasma.
Cells Tissues Organs. 2008;187(3):186-98. doi: 10.1159/000111804. Epub 2007 Nov 28.
5
Discrete crosslinked fibrin microthread scaffolds for tissue regeneration.
J Biomed Mater Res A. 2007 Jul;82(1):104-12. doi: 10.1002/jbm.a.31057.
6
Cardiac regeneration: materials can improve the passive properties of myocardium, but cell therapy must do more.
Circulation. 2006 Dec 12;114(24):2575-7. doi: 10.1161/CIRCULATIONAHA.106.668707.
7
Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro.
Tissue Eng. 2006 Aug;12(8):2385-96. doi: 10.1089/ten.2006.12.2385.
9
Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats.
Artif Organs. 2006 Feb;30(2):86-93. doi: 10.1111/j.1525-1594.2006.00186.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验