ACS Appl Mater Interfaces. 2011 Jan;3(1):1-6. doi: 10.1021/am1009088. Epub 2010 Dec 20.
The integration of electronically active oxide components onto silicon circuits represents an innovative approach to improving the functionality of novel devices. Like most semiconductor devices, complementary-metal-oxide-semiconductor image sensors (CISs) have physical limitations when progressively scaled down to extremely small dimensions. In this paper, we propose a novel hybrid CIS architecture that is based on the combination of nanometer-scale amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) and a conventional Si photo diode (PD). With this approach, we aim to overcome the loss of quantum efficiency and image quality due to the continuous miniaturization of PDs. Specifically, the a-IGZO TFT with 180 nm gate length is probed to exhibit remarkable performance including low 1/f noise and high output gain, despite fabrication temperatures as low as 200 °C. In particular, excellent device performance is achieved using a double-layer gate dielectric (Al₂O₃/SiO₂) combined with a trapezoidal active region formed by a tailored etching process. A self-aligned top gate structure is adopted to ensure low parasitic capacitance. Lastly, three-dimensional (3D) process simulation tools are employed to optimize the four-pixel CIS structure. The results demonstrate how our stacked hybrid device could be the starting point for new device strategies in image sensor architectures. Furthermore, we expect the proposed approach to be applicable to a wide range of micro- and nanoelectronic devices and systems.
将电子活性氧化物组件集成到硅电路上代表了一种改进新型器件功能的创新方法。与大多数半导体器件一样,互补金属氧化物半导体图像传感器 (CIS) 在逐渐缩小到极小微米尺寸时会受到物理限制。在本文中,我们提出了一种新颖的混合 CIS 架构,该架构基于纳米级非晶铟镓锌氧化物 (a-IGZO) 薄膜晶体管 (TFT) 和传统硅光电二极管 (PD) 的组合。通过这种方法,我们旨在克服由于 PD 的不断小型化而导致的量子效率和图像质量损失。具体来说,我们探测了栅长为 180nm 的 a-IGZO TFT,尽管制造温度低至 200°C,但其仍表现出出色的性能,包括低 1/f 噪声和高输出增益。特别的是,采用双层栅极介电层 (Al₂O₃/SiO₂) 和通过定制刻蚀工艺形成的梯形有源区的梯形有源区,可以实现优异的器件性能。采用自对准顶栅结构可确保低寄生电容。最后,使用三维 (3D) 工艺模拟工具对四像素 CIS 结构进行了优化。结果表明,我们的堆叠混合器件如何成为图像传感器架构中新型器件策略的起点。此外,我们预计所提出的方法将适用于广泛的微纳电子设备和系统。