Frostig R D, Lieke E E, Ts'o D Y, Grinvald A
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598.
Proc Natl Acad Sci U S A. 1990 Aug;87(16):6082-6. doi: 10.1073/pnas.87.16.6082.
We have shown previously the existence of small, activity-dependent changes in intrinsic optical properties of cortex that are useful for optical imaging of cortical functional architecture. In this study we introduce a higher resolution optical imaging system that offers spatial and temporal resolution exceeding that achieved by most alternative imaging techniques for imaging cortical functional architecture or for monitoring local changes in cerebral blood volume or oxygen saturation. In addition, we investigated the mechanisms responsible for the activity-dependent intrinsic signals evoked by sensory stimuli, and studied their origins and wavelength dependence. These studies enabled high-resolution visualization of cortical functional architecture at wavelengths ranging from 480 to 940 nm. With the use of near-infrared illumination it was possible to image cortical functional architecture through the intact dura or even through a thinned skull. In addition, the same imaging technique proved useful for imaging and discriminating sensory-evoked, activity-dependent changes in local blood volume and oxygen saturation (oxygen delivery). Illumination at 570 nm allowed imaging of activity-dependent blood volume increases, whereas at 600-630 nm, the predominant signal probably originated from activity-dependent oxygen delivery from capillaries. The onset of oxygen delivery started prior to the blood volume increase. Thus, optical imaging based on intrinsic signals is a minimally invasive procedure for monitoring short- and long-term changes in cerebral activity.
我们之前已经证明,皮层内在光学特性存在微小的、与活动相关的变化,这对于皮层功能结构的光学成像很有用。在本研究中,我们引入了一种更高分辨率的光学成像系统,其空间和时间分辨率超过了大多数用于成像皮层功能结构或监测脑血容量或氧饱和度局部变化的其他成像技术。此外,我们研究了感觉刺激诱发的与活动相关的内在信号的产生机制,并研究了它们的起源和波长依赖性。这些研究实现了在480至940纳米波长范围内对皮层功能结构的高分辨率可视化。使用近红外照明,可以通过完整的硬脑膜甚至变薄的颅骨对皮层功能结构进行成像。此外,同样的成像技术被证明可用于成像和区分感觉诱发的、与活动相关的局部血容量和氧饱和度(氧输送)变化。570纳米的照明允许对与活动相关的血容量增加进行成像,而在600 - 630纳米时,主要信号可能源自毛细血管与活动相关的氧输送。氧输送的开始先于血容量增加。因此,基于内在信号的光学成像是一种用于监测脑活动短期和长期变化的微创方法。