Department of Biological Sciences, Kent State University, Kent, OH, USA.
Mol Biol Evol. 2011 May;28(5):1645-59. doi: 10.1093/molbev/msq345. Epub 2010 Dec 20.
Mitochondrial (mt) function depends critically on optimal interactions between components encoded by mt and nuclear DNAs. mitochondrial DNA (mtDNA) inheritance (SMI) is thought to have evolved in animal species to maintain mito-nuclear complementarity by preventing the spread of selfish mt elements thus typically rendering mtDNA heteroplasmy evolutionarily ephemeral. Here, we show that mtDNA intraorganismal heteroplasmy can have deterministic underpinnings and persist for hundreds of millions of years. We demonstrate that the only exception to SMI in the animal kingdom, that is, the doubly uniparental mtDNA inheritance system in bivalves, with its three-way interactions among egg mt-, sperm mt- and nucleus-encoded gene products, is tightly associated with the maintenance of separate male and female sexes (dioecy) in freshwater mussels. Specifically, this mother-through-daughter and father-through-son mtDNA inheritance system, containing highly differentiated mt genomes, is found in all dioecious freshwater mussel species. Conversely, all hermaphroditic species lack the paternally transmitted mtDNA (=possess SMI) and have heterogeneous macromutations in the recently discovered, novel protein-coding gene (F-orf) in their maternally transmitted mt genomes. Using immunoelectron microscopy, we have localized the F-open reading frame (ORF) protein, likely involved in specifying separate sexes, in mitochondria and in the nucleus. Our results support the hypothesis that proteins coded by the highly divergent maternally and paternally transmitted mt genomes could be directly involved in sex determination in freshwater mussels. Concomitantly, our study demonstrates novel features for animal mt genomes: the existence of additional, lineage-specific, mtDNA-encoded proteins with functional significance and the involvement of mtDNA-encoded proteins in extra-mt functions. Our results open new avenues for the identification, characterization, and functional analyses of ORFs in the intergenic regions, previously defined as "noncoding," found in a large proportion of animal mt genomes.
线粒体(mt)功能取决于 mt 和核 DNA 编码成分之间的最佳相互作用。线粒体 DNA(mtDNA)遗传(SMI)被认为是在动物物种中进化而来的,通过防止自私的 mt 元件的传播来维持线粒体核互补性,从而使 mtDNA 异质性的进化短暂。在这里,我们表明,mtDNA 个体内异质性可以具有确定性基础,并持续数亿年。我们证明,动物界中 SMI 的唯一例外,即双单亲 mtDNA 遗传系统在双壳类动物中,其卵 mt-、精子 mt-和核编码基因产物之间的三向相互作用,与淡水贻贝类中雄性和雌性(雌雄同体)的分离密切相关。具体而言,这种通过母系和父系遗传的 mtDNA 系统,包含高度分化的 mt 基因组,存在于所有雌雄异体的淡水贻贝类中。相反,所有雌雄同体的物种都缺乏父系传递的 mtDNA(=具有 SMI),并且在最近发现的、新型的蛋白质编码基因(F-orf)中存在异质性大分子突变,其母系传递的 mt 基因组。使用免疫电子显微镜,我们将可能参与指定性别分离的 F-开放阅读框(ORF)蛋白定位于线粒体和核中。我们的结果支持了这样一种假设,即高度分化的母系和父系传递的 mt 基因组编码的蛋白质可能直接参与淡水贻贝类的性别决定。同时,我们的研究展示了动物 mt 基因组的新特征:存在具有功能意义的额外、谱系特异性的 mtDNA 编码蛋白,以及 mtDNA 编码蛋白参与额外 mt 功能。我们的研究结果为鉴定、表征和功能分析以前定义为“非编码”的基因间区中的 ORF 开辟了新的途径,这些 ORF 存在于很大一部分动物 mt 基因组中。