Suppr超能文献

参数不确定性下的失效概率。

Failure probability under parameter uncertainty.

机构信息

Cass Business School, City University London, London, UK.

出版信息

Risk Anal. 2011 May;31(5):727-44. doi: 10.1111/j.1539-6924.2010.01549.x. Epub 2010 Dec 22.

Abstract

In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications.

摘要

在许多风险分析问题中,失效等同于随机风险因素超过给定阈值的事件。如果决策者能够将阈值设置在适当的水平,就可以控制失效概率。这种抽象情况适用于具有基础设施控制的环境风险;具有库存控制的供应链风险;以及具有资本控制的保险偿付能力风险。然而,风险因素分布的不确定性意味着参数误差将会存在,并且为控制失效概率而采取的措施可能并不有效。我们表明,参数不确定性会增加失效的概率(理解为预期频率)。对于一类大的损失分布,它们来自位置-规模族的递增变换(包括对数正态分布、威布尔分布和帕累托分布),文章表明失效概率可以被精确计算,因为它们独立于真实(但未知)参数。因此,可以获得参数不确定性对失效概率的影响的明确度量。失效概率可以通过两种不同的方式进行控制:(1)根据可用数据集的大小,降低名义上所需的失效概率,以及(2)修改用于计算风险控制的分布本身。方法(1)对应于概率的频率主义/监管观点,而方法(2)与贝叶斯/个人主义观点一致。我们进一步表明,这两种方法在实现所需失效概率方面是一致的。最后,我们简要讨论了数据池化及其系统风险影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验