Suppr超能文献

Ku 可以在端粒酶 RNP 的多个位置促进酵母中的端粒延长。

Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP.

机构信息

Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

RNA. 2011 Feb;17(2):298-311. doi: 10.1261/rna.2483611. Epub 2010 Dec 21.

Abstract

Unlike ribonucleoprotein complexes that have a highly ordered overall architecture, such as the ribosome, yeast telomerase appears to be much more loosely constrained. Here, we investigate the importance of positioning of the Ku subunit within the 1157-nt yeast telomerase RNA (TLC1). Deletion of the 48-nt Ku-binding hairpin in TLC1 RNA (tlc1Δ48) reduces telomere length, survival of cells with gross chromosomal rearrangements, and de novo telomere addition at a broken chromosome end. To test the function of Ku at novel positions in the telomerase RNP, we reintroduced its binding site into tlc1Δ48 RNA at position 446 or 1029. We found that Ku bound to these repositioned sites in vivo and telomere length increased slightly, but statistically significantly. The ability of telomerase to promote survival of cells with gross chromosomal rearrangements by healing damaged chromosome arms was also partially restored, whereas the kinetics of DNA addition to a specific chromosome break was delayed. Having two Ku sites in TLC1 caused progressive hyperelongation of a variable subset of telomeres, consistent with Ku's role in telomerase recruitment to chromosome ends. The number of Ku-binding sites in TLC1 contributed to telomerase RNA abundance in vivo but was only partially responsible for telomere length phenotypes. Thus, telomerase RNA levels and telomere length regulation can be modulated by the number of Ku sites in telomerase RNA. Furthermore, there is substantial flexibility in the relative positioning of Ku in the telomerase RNP for native telomere length maintenance, although not as much flexibility as for the essential Est1p subunit.

摘要

与具有高度有序整体结构的核糖核蛋白复合物(如核糖体)不同,酵母端粒酶似乎受到的约束要小得多。在这里,我们研究了 Ku 亚基在 1157 个核苷酸的酵母端粒酶 RNA(TLC1)内定位的重要性。TLC1 RNA 中 Ku 结合发夹的 48 个核苷酸缺失(tlc1Δ48)会减少端粒长度、具有大染色体重排的细胞的存活率以及在断裂染色体末端的新端粒添加。为了测试 Ku 在端粒酶 RNP 新位置的功能,我们将其结合位点重新引入到 tlc1Δ48 RNA 的 446 或 1029 位。我们发现 Ku 在体内结合这些重新定位的位点,端粒长度略有增加,但具有统计学意义。端粒酶通过修复受损染色体臂来促进具有大染色体重排的细胞存活的能力也部分恢复,而特定染色体断裂处 DNA 添加的动力学被延迟。在 TLC1 中有两个 Ku 位点会导致可变数量的端粒逐渐过度延长,这与 Ku 在端粒酶招募到染色体末端中的作用一致。TLC1 中的 Ku 结合位点数量有助于体内端粒酶 RNA 的丰度,但仅部分负责端粒长度表型。因此,端粒酶 RNA 水平和端粒长度的调节可以通过端粒酶 RNA 中 Ku 位点的数量来调节。此外,对于天然端粒长度维持,Ku 在端粒酶 RNP 中的相对定位具有很大的灵活性,尽管不如对必需的 Est1p 亚基那样灵活。

相似文献

1
Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP.
RNA. 2011 Feb;17(2):298-311. doi: 10.1261/rna.2483611. Epub 2010 Dec 21.
2
Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends.
Genes Dev. 2003 Oct 1;17(19):2384-95. doi: 10.1101/gad.1125903. Epub 2003 Sep 15.
3
Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model.
Cell. 2012 Mar 2;148(5):922-32. doi: 10.1016/j.cell.2012.01.033. Epub 2012 Feb 23.
4
The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres.
Genetics. 2014 Aug;197(4):1123-36. doi: 10.1534/genetics.114.164707. Epub 2014 May 30.
5
Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo.
RNA. 2012 Sep;18(9):1666-78. doi: 10.1261/rna.033555.112. Epub 2012 Jul 31.
6
Cell cycle-dependent regulation of yeast telomerase by Ku.
Nat Struct Mol Biol. 2004 Dec;11(12):1198-205. doi: 10.1038/nsmb854. Epub 2004 Nov 7.
8
Structural Insights into Yeast Telomerase Recruitment to Telomeres.
Cell. 2018 Jan 11;172(1-2):331-343.e13. doi: 10.1016/j.cell.2017.12.008. Epub 2017 Dec 28.
9
RNA as a flexible scaffold for proteins: yeast telomerase and beyond.
Cold Spring Harb Symp Quant Biol. 2006;71:217-24. doi: 10.1101/sqb.2006.71.011.
10
Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions.
Molecules. 2020 Jun 14;25(12):2750. doi: 10.3390/molecules25122750.

引用本文的文献

1
telomerase RNA: secondary structure and flexible-scaffold function.
bioRxiv. 2025 Feb 23:2025.02.22.638514. doi: 10.1101/2025.02.22.638514.
2
Inverse-Folding Design of Yeast Telomerase RNA Increases Activity In Vitro.
Noncoding RNA. 2023 Aug 28;9(5):51. doi: 10.3390/ncrna9050051.
4
Inverse-folding design of yeast telomerase RNA increases activity .
bioRxiv. 2023 Feb 8:2023.02.08.527468. doi: 10.1101/2023.02.08.527468.
7
Structural insights into telomere protection and homeostasis regulation by yeast CST complex.
Nat Struct Mol Biol. 2020 Aug;27(8):752-762. doi: 10.1038/s41594-020-0459-8. Epub 2020 Jul 13.
8
Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions.
Molecules. 2020 Jun 14;25(12):2750. doi: 10.3390/molecules25122750.
10
Single-cell imaging reveals unexpected heterogeneity of telomerase reverse transcriptase expression across human cancer cell lines.
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18488-18497. doi: 10.1073/pnas.1908275116. Epub 2019 Aug 26.

本文引用的文献

2
Triple-helix structure in telomerase RNA contributes to catalysis.
Nat Struct Mol Biol. 2008 Jun;15(6):634-40. doi: 10.1038/nsmb.1420. Epub 2008 May 25.
3
Multiple yeast genes, including Paf1 complex genes, affect telomere length via telomerase RNA abundance.
Mol Cell Biol. 2008 Jun;28(12):4152-61. doi: 10.1128/MCB.00512-08. Epub 2008 Apr 14.
4
TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres.
EMBO J. 2008 Mar 5;27(5):748-57. doi: 10.1038/emboj.2008.21. Epub 2008 Feb 14.
5
RNA as a flexible scaffold for proteins: yeast telomerase and beyond.
Cold Spring Harb Symp Quant Biol. 2006;71:217-24. doi: 10.1101/sqb.2006.71.011.
6
The POT1-TPP1 telomere complex is a telomerase processivity factor.
Nature. 2007 Feb 1;445(7127):506-10. doi: 10.1038/nature05454. Epub 2007 Jan 21.
7
Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita.
Genes Dev. 2006 Oct 15;20(20):2848-58. doi: 10.1101/gad.1476206. Epub 2006 Oct 2.
8
Low abundance of telomerase in yeast: implications for telomerase haploinsufficiency.
RNA. 2006 Sep;12(9):1721-37. doi: 10.1261/rna.134706. Epub 2006 Aug 7.
9
Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae.
Mol Microbiol. 2006 Mar;59(5):1357-68. doi: 10.1111/j.1365-2958.2006.05026.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验