Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America.
PLoS One. 2010 Dec 17;5(12):e14370. doi: 10.1371/journal.pone.0014370.
A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science.
深入了解认知过程需要对从遗传学和神经系统结构的发展到行为的步骤进行功能和定量分析。像非洲爪蟾和扁形动物这样的可分子操作的模型系统为剖析决定大脑和中枢神经系统复杂结构的机制提供了前所未有的机会。一个促进行为定量分析的标准化平台将对进化行为学、神经药理学和认知科学产生重大影响。虽然存在一些动物跟踪系统,但现有的系统不允许进行自动化训练(实时向个体对象提供反馈,这对于操作性条件反射测定是必要的)。该领域缺乏标准化,以及开发具有必要功能的多功能系统所面临的众多技术挑战,构成了一个重大障碍,使分子发育生物学实验室无法将行为分析终点纳入其药理学和遗传学干扰研究中。在这里,我们报告了第二代系统的开发,这是一个高度灵活、强大的机器视觉和环境控制平台。为了能够进行旨在了解基因在大脑功能和行为中的作用的多学科研究,并帮助其他没有复杂工程开发设施的实验室,我们描述了该设备及其克服的问题。我们还使用青蛙蝌蚪和平行虫展示了其使用的示例数据。该设计在构建过程中解决了重大的工程挑战,因此是一种相对廉价的仪器,在多个领域具有广泛的相关性,并将加速药理学、神经生物学、再生医学和认知科学的跨学科发现。