Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.
PLoS One. 2010 Dec 14;5(12):e15617. doi: 10.1371/journal.pone.0015617.
The use of planarians as a model system is expanding and the mechanisms that control planarian regeneration are being elucidated. The planarian Schmidtea mediterranea in particular has become a species of choice. Currently the planarian research community has access to this whole genome sequencing project and over 70,000 expressed sequence tags. However, the establishment of massively parallel sequencing technologies has provided the opportunity to define genetic content, and in particular transcriptomes, in unprecedented detail. Here we apply this approach to the planarian model system. We have sequenced, mapped and assembled 581,365 long and 507,719,814 short reads from RNA of intact and mixed stages of the first 7 days of planarian regeneration. We used an iterative mapping approach to identify and define de novo splice sites with short reads and increase confidence in our transcript predictions. We more than double the number of transcripts currently defined by publicly available ESTs, resulting in a collection of 25,053 transcripts described by combining platforms. We also demonstrate the utility of this collection for an RNAseq approach to identify potential transcripts that are enriched in neoblast stem cells and their progeny by comparing transcriptome wide expression levels between irradiated and intact planarians. Our experiments have defined an extensive planarian transcriptome that can be used as a template for RNAseq and can also help to annotate the S. mediterranea genome. We anticipate that suites of other 'omic approaches will also be facilitated by building on this comprehensive data set including RNAseq across many planarian regenerative stages, scenarios, tissues and phenotypes generated by RNAi.
涡虫被用作模式生物的现象越来越普遍,控制涡虫再生的机制也逐渐被阐明。尤其是地中海扁形虫(Schmidtea mediterranea),已经成为首选的模式生物之一。目前,扁形虫研究界可以使用这个全基因组测序项目和超过 70000 个表达序列标签。然而,大规模并行测序技术的建立为定义遗传内容,特别是转录组,提供了前所未有的详细信息。在这里,我们将这种方法应用于扁形虫模式生物。我们已经对完整和混合阶段的第 1 天至第 7 天的涡虫再生的 RNA 进行了测序、映射和组装,共获得 581365 条长读段和 507719814 条短读段。我们使用迭代映射方法,通过短读段识别和定义新的剪接位点,并增加我们对转录本预测的信心。我们将目前通过公共 EST 定义的转录本数量增加了一倍以上,最终得到 25053 个转录本,这些转录本是通过结合不同平台的信息进行描述的。我们还展示了这个转录本集合在 RNAseq 中的应用,通过比较辐照和完整涡虫之间的转录组水平,确定了富含成体干细胞及其后代的潜在转录本。我们的实验定义了一个广泛的扁形虫转录组,可以作为 RNAseq 的模板,也可以帮助注释 S. mediterranea 基因组。我们预计,基于这个全面数据集的其他“组学”方法套件也将得到促进,包括跨越许多涡虫再生阶段、场景、组织和表型的 RNAseq,以及由 RNAi 产生的场景。