Suppr超能文献

鉴定志贺毒素 1 和 2 在酿酒酵母中的细胞毒性关键氨基酸。

Identification of amino acids critical for the cytotoxicity of Shiga toxin 1 and 2 in Saccharomyces cerevisiae.

机构信息

Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8502, USA.

出版信息

Toxicon. 2011 Mar 15;57(4):525-39. doi: 10.1016/j.toxicon.2010.12.006. Epub 2010 Dec 22.

Abstract

Shiga toxins (Stx1 and Stx2) are produced by E. coli O157:H7, which is a leading cause of foodborne illness. The A subunits of Stx1 (Stx1A) and Stx2 (Stx2A) are ribosome inactivating proteins (RIPs) that inhibit translation by removing an adenine from the highly conserved α-sarcin ricin loop (SRL) of the large rRNA. Here, we used mutagenesis in Saccharomyces cerevisiae to identify residues critical for cytotoxicity of Stx1A and Stx2A. The A subunits depurinated the SRL, inhibited translation and caused apoptotic-like cell death in yeast. Single mutations in Asn75, Tyr77, Glu167 and Arg176 reduced the cytotoxicity of both toxins around 10-fold. However, Asn75 and Tyr77 were more critical for the depurination activity of Stx2A, while Arg176 was more critical for the depurination activity of Stx1A. The crystal structures of the two proteins lack electron density for some surface loops, including one which is adjacent to the active site in both molecules. Modeling these loops changed neither the secondary nor the tertiary structures of the rest of the protein. Analysis of solvent accessible surface areas indicated that Asn75 and Tyr77 are more exposed in Stx2A, while Arg176 is more exposed in Stx1A, indicating that residues with higher surface exposure were more critical for enzymatic activity. Double mutations at Glu167 and Arg176 eliminated the depurination activity and cytotoxicity of both toxins. C-terminal deletions of A chains eliminated cytotoxicity of both toxins, but showed functional differences. Unlike Stx1A, cytotoxicity of Stx2A was lost before its ability to depurinate ribosomes. These results identify residues that affect enzymatic activity and cytotoxicity of Stx1A and Stx2A differently and demonstrate that the function of these residues can be differentiated in yeast. The extent of ribosome depurination and translation inhibition did not correlate with the extent of cell death, indicating that depurination of the SRL and inhibition of translation are not entirely responsible for cell death.

摘要

志贺毒素(Stx1 和 Stx2)由大肠杆菌 O157:H7 产生,是食源性疾病的主要原因。Stx1(Stx1A)和 Stx2(Stx2A)的 A 亚基是核糖体失活蛋白(RIP),通过从高度保守的大亚 rRNA 的 Sarcin-ricin 环(SRL)中去除一个腺嘌呤来抑制翻译。在这里,我们使用酿酒酵母中的诱变来鉴定 Stx1A 和 Stx2A 细胞毒性的关键残基。A 亚基脱嘌呤 SRL,抑制翻译并导致酵母细胞凋亡样死亡。Asn75、Tyr77、Glu167 和 Arg176 的单点突变使两种毒素的细胞毒性降低了约 10 倍。然而,Asn75 和 Tyr77 对 Stx2A 的脱嘌呤活性更为关键,而 Arg176 对 Stx1A 的脱嘌呤活性更为关键。这两种蛋白质的晶体结构缺乏一些表面环的电子密度,包括在两个分子的活性部位附近的一个环。对这些环进行建模既没有改变蛋白质其余部分的二级结构,也没有改变三级结构。对溶剂可及表面积的分析表明,Asn75 和 Tyr77 在 Stx2A 中暴露更多,而 Arg176 在 Stx1A 中暴露更多,表明具有更高表面暴露的残基对酶活性更为关键。Glu167 和 Arg176 的双突变消除了两种毒素的脱嘌呤活性和细胞毒性。A 链的 C 端缺失消除了两种毒素的细胞毒性,但表现出功能差异。与 Stx1A 不同,Stx2A 的核糖体脱嘌呤活性在核糖体脱嘌呤之前丧失。这些结果表明,不同的残基影响 Stx1A 和 Stx2A 的酶活性和细胞毒性,并证明这些残基的功能可以在酵母中区分。核糖体脱嘌呤和翻译抑制的程度与细胞死亡的程度没有相关性,表明 SRL 的脱嘌呤和翻译抑制不完全负责细胞死亡。

相似文献

引用本文的文献

本文引用的文献

1
Shiga toxins--from cell biology to biomedical applications.志贺毒素——从细胞生物学到生物医学应用。
Nat Rev Microbiol. 2010 Feb;8(2):105-16. doi: 10.1038/nrmicro2279. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验