Richardson Magnus J E
Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021928. doi: 10.1103/PhysRevE.80.021928. Epub 2009 Aug 24.
The profile of transmembrane-channel expression in neurons is class dependent and a crucial determinant of neuronal dynamics. Here, a generalization of the experimentally verified exponential integrate-and-fire model is introduced that includes biophysical, nonlinear gated conductance-based currents, and a spike shape. A Fokker-Planck-based method is developed that allows for the rapid numerical calculation of steady-state and linear-response properties for recurrent networks of neurons with gating-variable dynamics slower than that of the voltage. This limit includes many cases of biological interest, particularly under in vivo conditions of high synaptic conductance. The utility of the method is illustrated by applying it to two biophysically detailed models adapted from the literature: an entorhinal layer-II cortical neuron and a neuron featuring both calcium-activated and voltage-activated spike-frequency-adaptation currents. The framework generalizes to networks comprised of different neuronal classes and so will allow for the modeling of emergent states in neural tissue at significantly increased levels of biological detail.
神经元中跨膜通道表达的概况取决于神经元类别,并且是神经元动力学的关键决定因素。在此,引入了经过实验验证的指数积分发放模型的一种推广形式,该模型包括生物物理的、基于非线性门控电导的电流以及一个尖峰形状。开发了一种基于福克 - 普朗克的方法,该方法能够对门控变量动力学比电压动力学慢的神经元递归网络的稳态和线性响应特性进行快速数值计算。这个限制涵盖了许多具有生物学意义的情况,特别是在高突触电导的体内条件下。通过将该方法应用于从文献中改编的两个具有生物物理细节的模型,说明了该方法的实用性:一个内嗅皮层II层神经元模型和一个同时具有钙激活和电压激活的尖峰频率适应电流的神经元模型。该框架可推广到由不同神经元类别组成的网络,因此将能够在显著增加的生物学细节水平上对神经组织中的涌现状态进行建模。