Department of Applied Science, University of Arkansas, Little Rock, AR 72204, USA.
Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1028-33. doi: 10.1073/pnas.1008856108. Epub 2010 Dec 28.
Understanding the nature of interactions between engineered nanomaterials and plants is crucial in comprehending the impact of nanotechnology on the environment and agriculture with a focus on toxicity concerns, plant disease treatment, and genetic engineering. To date, little progress has been made in studying nanoparticle-plant interactions at single nanoparticle and genetic levels. Here, we introduce an advanced platform integrating genetic, Raman, photothermal, and photoacoustic methods. Using this approach, we discovered that multiwall carbon nanotubes induce previously unknown changes in gene expression in tomato leaves and roots, particularly, up-regulation of the stress-related genes, including those induced by pathogens and the water-channel LeAqp2 gene. A nano-bubble amplified photothermal/photoacoustic imaging, spectroscopy, and burning technique demonstrated the detection of multiwall carbon nanotubes in roots, leaves, and fruits down to the single nanoparticle and cell level. Thus, our integrated platform allows the study of nanoparticles' impact on plants with higher sensitivity and specificity, compared to existing assays.
理解工程纳米材料与植物之间的相互作用性质对于理解纳米技术对环境和农业的影响至关重要,重点关注毒性问题、植物疾病治疗和基因工程。迄今为止,在研究单个纳米颗粒和遗传水平上的纳米颗粒-植物相互作用方面进展甚微。在这里,我们介绍了一个集成了遗传、拉曼、光热和光声方法的先进平台。使用这种方法,我们发现多壁碳纳米管会引起番茄叶片和根部以前未知的基因表达变化,特别是与应激相关的基因上调,包括那些由病原体和水通道 LeAqp2 基因诱导的基因。纳米气泡放大的光热/光声成像、光谱和燃烧技术证明了可以在根、叶和果实中检测到多壁碳纳米管,其检测下限低至单个纳米颗粒和细胞水平。因此,与现有检测方法相比,我们的集成平台可以更灵敏、更特异地研究纳米颗粒对植物的影响。