Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
Neuroimage. 2011 Apr 1;55(3):1091-108. doi: 10.1016/j.neuroimage.2010.12.067. Epub 2010 Dec 31.
Whole brain extraction is an important pre-processing step in neuroimage analysis. Manual or semi-automated brain delineations are labour-intensive and thus not desirable in large studies, meaning that automated techniques are preferable. The accuracy and robustness of automated methods are crucial because human expertise may be required to correct any suboptimal results, which can be very time consuming. We compared the accuracy of four automated brain extraction methods: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), Hybrid Watershed Algorithm (HWA) and a Multi-Atlas Propagation and Segmentation (MAPS) technique we have previously developed for hippocampal segmentation. The four methods were applied to extract whole brains from 682 1.5T and 157 3T T(1)-weighted MR baseline images from the Alzheimer's Disease Neuroimaging Initiative database. Semi-automated brain segmentations with manual editing and checking were used as the gold-standard to compare with the results. The median Jaccard index of MAPS was higher than HWA, BET and BSE in 1.5T and 3T scans (p<0.05, all tests), and the 1st to 99th centile range of the Jaccard index of MAPS was smaller than HWA, BET and BSE in 1.5T and 3T scans ( p<0.05, all tests). HWA and MAPS were found to be best at including all brain tissues (median false negative rate ≤0.010% for 1.5T scans and ≤0.019% for 3T scans, both methods). The median Jaccard index of MAPS were similar in both 1.5T and 3T scans, whereas those of BET, BSE and HWA were higher in 1.5T scans than 3T scans (p<0.05, all tests). We found that the diagnostic group had a small effect on the median Jaccard index of all four methods. In conclusion, MAPS had relatively high accuracy and low variability compared to HWA, BET and BSE in MR scans with and without atrophy.
全脑提取是神经影像分析中的一个重要预处理步骤。手动或半自动的脑勾画非常耗费人力,因此在大型研究中并不理想,这意味着自动化技术更可取。自动化方法的准确性和稳健性至关重要,因为可能需要人类专业知识来纠正任何不理想的结果,这可能非常耗时。我们比较了四种自动化脑提取方法的准确性:脑提取工具(BET)、脑表面提取器(BSE)、混合分水岭算法(HWA)和我们之前为海马分割开发的多图谱传播和分割(MAPS)技术。这四种方法被应用于从阿尔茨海默病神经影像学倡议数据库中的 682 个 1.5T 和 157 个 3T T1 加权 MR 基线图像中提取全脑。半自动脑分割与手动编辑和检查相结合被用作金标准来与结果进行比较。在 1.5T 和 3T 扫描中,MAPS 的中位数 Jaccard 指数高于 HWA、BET 和 BSE(p<0.05,所有测试),并且 MAPS 的 Jaccard 指数的 1 至 99 百分位数范围小于 HWA、BET 和 BSE 在 1.5T 和 3T 扫描中(p<0.05,所有测试)。在包括所有脑组织方面,HWA 和 MAPS 被发现是最好的(1.5T 扫描的中位数假阴性率≤0.010%,3T 扫描的中位数假阴性率≤0.019%,两种方法)。MAPS 的中位数 Jaccard 指数在 1.5T 和 3T 扫描中相似,而 BET、BSE 和 HWA 的中位数 Jaccard 指数在 1.5T 扫描中高于 3T 扫描(p<0.05,所有测试)。我们发现,在所有四种方法中,诊断组对中位数 Jaccard 指数的影响很小。总之,与 HWA、BET 和 BSE 相比,MAPS 在有或没有萎缩的 MR 扫描中具有相对较高的准确性和较低的可变性。