Suppr超能文献

脑图谱:一种基于模板库的自动、准确和稳健的脑提取技术。

Brain MAPS: an automated, accurate and robust brain extraction technique using a template library.

机构信息

Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.

出版信息

Neuroimage. 2011 Apr 1;55(3):1091-108. doi: 10.1016/j.neuroimage.2010.12.067. Epub 2010 Dec 31.

Abstract

Whole brain extraction is an important pre-processing step in neuroimage analysis. Manual or semi-automated brain delineations are labour-intensive and thus not desirable in large studies, meaning that automated techniques are preferable. The accuracy and robustness of automated methods are crucial because human expertise may be required to correct any suboptimal results, which can be very time consuming. We compared the accuracy of four automated brain extraction methods: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), Hybrid Watershed Algorithm (HWA) and a Multi-Atlas Propagation and Segmentation (MAPS) technique we have previously developed for hippocampal segmentation. The four methods were applied to extract whole brains from 682 1.5T and 157 3T T(1)-weighted MR baseline images from the Alzheimer's Disease Neuroimaging Initiative database. Semi-automated brain segmentations with manual editing and checking were used as the gold-standard to compare with the results. The median Jaccard index of MAPS was higher than HWA, BET and BSE in 1.5T and 3T scans (p<0.05, all tests), and the 1st to 99th centile range of the Jaccard index of MAPS was smaller than HWA, BET and BSE in 1.5T and 3T scans ( p<0.05, all tests). HWA and MAPS were found to be best at including all brain tissues (median false negative rate ≤0.010% for 1.5T scans and ≤0.019% for 3T scans, both methods). The median Jaccard index of MAPS were similar in both 1.5T and 3T scans, whereas those of BET, BSE and HWA were higher in 1.5T scans than 3T scans (p<0.05, all tests). We found that the diagnostic group had a small effect on the median Jaccard index of all four methods. In conclusion, MAPS had relatively high accuracy and low variability compared to HWA, BET and BSE in MR scans with and without atrophy.

摘要

全脑提取是神经影像分析中的一个重要预处理步骤。手动或半自动的脑勾画非常耗费人力,因此在大型研究中并不理想,这意味着自动化技术更可取。自动化方法的准确性和稳健性至关重要,因为可能需要人类专业知识来纠正任何不理想的结果,这可能非常耗时。我们比较了四种自动化脑提取方法的准确性:脑提取工具(BET)、脑表面提取器(BSE)、混合分水岭算法(HWA)和我们之前为海马分割开发的多图谱传播和分割(MAPS)技术。这四种方法被应用于从阿尔茨海默病神经影像学倡议数据库中的 682 个 1.5T 和 157 个 3T T1 加权 MR 基线图像中提取全脑。半自动脑分割与手动编辑和检查相结合被用作金标准来与结果进行比较。在 1.5T 和 3T 扫描中,MAPS 的中位数 Jaccard 指数高于 HWA、BET 和 BSE(p<0.05,所有测试),并且 MAPS 的 Jaccard 指数的 1 至 99 百分位数范围小于 HWA、BET 和 BSE 在 1.5T 和 3T 扫描中(p<0.05,所有测试)。在包括所有脑组织方面,HWA 和 MAPS 被发现是最好的(1.5T 扫描的中位数假阴性率≤0.010%,3T 扫描的中位数假阴性率≤0.019%,两种方法)。MAPS 的中位数 Jaccard 指数在 1.5T 和 3T 扫描中相似,而 BET、BSE 和 HWA 的中位数 Jaccard 指数在 1.5T 扫描中高于 3T 扫描(p<0.05,所有测试)。我们发现,在所有四种方法中,诊断组对中位数 Jaccard 指数的影响很小。总之,与 HWA、BET 和 BSE 相比,MAPS 在有或没有萎缩的 MR 扫描中具有相对较高的准确性和较低的可变性。

相似文献

1
Brain MAPS: an automated, accurate and robust brain extraction technique using a template library.
Neuroimage. 2011 Apr 1;55(3):1091-108. doi: 10.1016/j.neuroimage.2010.12.067. Epub 2010 Dec 31.
3
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
5
Comparing 3T and 1.5T MRI for mapping hippocampal atrophy in the Alzheimer's Disease Neuroimaging Initiative.
AJNR Am J Neuroradiol. 2015 Apr;36(4):653-60. doi: 10.3174/ajnr.A4228. Epub 2015 Jan 22.
6
Automated hippocampal segmentation in patients with epilepsy: available free online.
Epilepsia. 2013 Dec;54(12):2166-73. doi: 10.1111/epi.12408. Epub 2013 Oct 23.
7
Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates.
PLoS One. 2014 Jan 29;9(1):e77810. doi: 10.1371/journal.pone.0077810. eCollection 2014.
8
Robust skull stripping using multiple MR image contrasts insensitive to pathology.
Neuroimage. 2017 Feb 1;146:132-147. doi: 10.1016/j.neuroimage.2016.11.017. Epub 2016 Nov 15.
9
Validated automatic brain extraction of head CT images.
Neuroimage. 2015 Jul 1;114:379-85. doi: 10.1016/j.neuroimage.2015.03.074. Epub 2015 Apr 7.
10
Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease.
Neuroimage. 2010 Jul 15;51(4):1345-59. doi: 10.1016/j.neuroimage.2010.03.018. Epub 2010 Mar 15.

引用本文的文献

1
Construction of a Structurally Unbiased Brain Template with High Image Quality from MRI Scans of Saudi Adult Females.
Bioengineering (Basel). 2025 Jun 30;12(7):722. doi: 10.3390/bioengineering12070722.
2
Associations between night/shift working and late-life brain health.
Brain Commun. 2025 Jul 4;7(4):fcaf264. doi: 10.1093/braincomms/fcaf264. eCollection 2025.
3
An Unsupervised Brain Extraction Quality Control Approach for Efficient Neuro-Oncology Studies.
J Imaging Inform Med. 2025 Jun 25. doi: 10.1007/s10278-025-01570-y.
4
The relationship between leisure time physical activity patterns, Alzheimer's disease markers and cognition.
Brain Commun. 2025 Jan 31;7(1):fcae431. doi: 10.1093/braincomms/fcae431. eCollection 2025.
5
Biomarker pathway heterogeneity of amyloid-positive individuals.
Alzheimers Dement. 2024 Dec;20(12):8503-8515. doi: 10.1002/alz.14287. Epub 2024 Oct 17.
6
Overview of ADNI MRI.
Alzheimers Dement. 2024 Oct;20(10):7350-7360. doi: 10.1002/alz.14166. Epub 2024 Sep 11.
7
Neuroimaging, clinical and life course correlates of normal-appearing white matter integrity in 70-year-olds.
Brain Commun. 2023 Aug 18;5(5):fcad225. doi: 10.1093/braincomms/fcad225. eCollection 2023.
8
Weakly Supervised Skull Stripping of Magnetic Resonance Imaging of Brain Tumor Patients.
Front Neuroimaging. 2022 Apr 25;1:832512. doi: 10.3389/fnimg.2022.832512. eCollection 2022.

本文引用的文献

1
Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE).
IEEE Trans Med Imaging. 2010 Dec;29(12):2000-8. doi: 10.1109/TMI.2010.2057442. Epub 2010 Jul 26.
3
Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease.
Neuroimage. 2010 Jul 15;51(4):1345-59. doi: 10.1016/j.neuroimage.2010.03.018. Epub 2010 Mar 15.
5
Fast free-form deformation using graphics processing units.
Comput Methods Programs Biomed. 2010 Jun;98(3):278-84. doi: 10.1016/j.cmpb.2009.09.002. Epub 2009 Oct 8.
6
LEAP: learning embeddings for atlas propagation.
Neuroimage. 2010 Jan 15;49(2):1316-25. doi: 10.1016/j.neuroimage.2009.09.069. Epub 2009 Oct 6.
7
Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations.
Eur Radiol. 2010 Mar;20(3):674-82. doi: 10.1007/s00330-009-1581-5. Epub 2009 Sep 16.
8
Skull stripping using graph cuts.
Neuroimage. 2010 Jan 1;49(1):225-39. doi: 10.1016/j.neuroimage.2009.08.050. Epub 2009 Sep 2.
9
Skull stripping based on region growing for magnetic resonance brain images.
Neuroimage. 2009 Oct 1;47(4):1394-407. doi: 10.1016/j.neuroimage.2009.04.047. Epub 2009 Apr 21.
10
Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.
Neuroimage. 2009 Jul 1;46(3):726-38. doi: 10.1016/j.neuroimage.2009.02.018. Epub 2009 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验