Suppr超能文献

脑肿瘤患者磁共振成像的弱监督颅骨剥离

Weakly Supervised Skull Stripping of Magnetic Resonance Imaging of Brain Tumor Patients.

作者信息

Ranjbar Sara, Singleton Kyle W, Curtin Lee, Rickertsen Cassandra R, Paulson Lisa E, Hu Leland S, Mitchell Joseph Ross, Swanson Kristin R

机构信息

Mathematical NeuroOncology Lab, Department of Neurosurgery, Mayo Clinic, Phoenix, AZ, United States.

Department of Diagnostic Imaging and Interventional Radiology, Mayo Clinic, Phoenix, AZ, United States.

出版信息

Front Neuroimaging. 2022 Apr 25;1:832512. doi: 10.3389/fnimg.2022.832512. eCollection 2022.

Abstract

Automatic brain tumor segmentation is particularly challenging on magnetic resonance imaging (MRI) with marked pathologies, such as brain tumors, which usually cause large displacement, abnormal appearance, and deformation of brain tissue. Despite an abundance of previous literature on learning-based methodologies for MRI segmentation, few works have focused on tackling MRI skull stripping of brain tumor patient data. This gap in literature can be associated with the lack of publicly available data (due to concerns about patient identification) and the labor-intensive nature of generating ground truth labels for model training. In this retrospective study, we assessed the performance of Dense-Vnet in skull stripping brain tumor patient MRI trained on our large multi-institutional brain tumor patient dataset. Our data included pretreatment MRI of 668 patients from our in-house institutional review board-approved multi-institutional brain tumor repository. Because of the absence of ground truth, we used imperfect automatically generated training labels using SPM12 software. We trained the network using common MRI sequences in oncology: T1-weighted with gadolinium contrast, T2-weighted fluid-attenuated inversion recovery, or both. We measured model performance against 30 independent brain tumor test cases with available manual brain masks. All images were harmonized for voxel spacing and volumetric dimensions before model training. Model training was performed using the modularly structured deep learning platform NiftyNet that is tailored toward simplifying medical image analysis. Our proposed approach showed the success of a weakly supervised deep learning approach in MRI brain extraction even in the presence of pathology. Our best model achieved an average Dice score, sensitivity, and specificity of, respectively, 94.5, 96.4, and 98.5% on the multi-institutional independent brain tumor test set. To further contextualize our results within existing literature on healthy brain segmentation, we tested the model against healthy subjects from the benchmark LBPA40 dataset. For this dataset, the model achieved an average Dice score, sensitivity, and specificity of 96.2, 96.6, and 99.2%, which are, although comparable to other publications, slightly lower than the performance of models trained on healthy patients. We associate this drop in performance with the use of brain tumor data for model training and its influence on brain appearance.

摘要

在具有明显病变的磁共振成像(MRI)上进行自动脑肿瘤分割极具挑战性,例如脑肿瘤,它通常会导致脑组织发生大的位移、异常外观和变形。尽管之前有大量关于基于学习的MRI分割方法的文献,但很少有作品专注于解决脑肿瘤患者数据的MRI颅骨剥离问题。文献中的这一空白可能与缺乏公开可用数据(由于对患者身份识别的担忧)以及为模型训练生成真实标签的劳动密集型性质有关。在这项回顾性研究中,我们评估了在我们的大型多机构脑肿瘤患者数据集上训练的Dense-Vnet在脑肿瘤患者MRI颅骨剥离中的性能。我们的数据包括来自我们内部机构审查委员会批准的多机构脑肿瘤库的668名患者的治疗前MRI。由于缺乏真实标签,我们使用了SPM12软件自动生成的不完美训练标签。我们使用肿瘤学中常见的MRI序列训练网络:钆对比增强T1加权、液体衰减反转恢复T2加权或两者兼用。我们针对30个具有可用手动脑掩码的独立脑肿瘤测试病例测量了模型性能。在模型训练之前,对所有图像进行了体素间距和体积尺寸的归一化处理。模型训练使用了模块化结构的深度学习平台NiftyNet,该平台专为简化医学图像分析而设计。我们提出的方法表明,即使存在病变,弱监督深度学习方法在MRI脑提取中也是成功的。我们最好的模型在多机构独立脑肿瘤测试集上分别实现了平均Dice分数、灵敏度和特异性,分别为94.5%、96.4%和98.5%。为了在现有关于健康脑分割的文献中进一步将我们的结果置于背景中,我们针对基准LBPA40数据集中的健康受试者测试了该模型。对于这个数据集,该模型实现了平均Dice分数、灵敏度和特异性,分别为96.2%、96.6%和99.2%,尽管与其他出版物相当,但略低于在健康患者上训练的模型的性能。我们将这种性能下降与使用脑肿瘤数据进行模型训练及其对脑外观的影响联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb35/10406204/a632d3aba3ac/fnimg-01-832512-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验