Department of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
J Biol Chem. 2011 Mar 25;286(12):10581-92. doi: 10.1074/jbc.M110.187450. Epub 2011 Jan 3.
The mechanism by which HIV-1-Tat protein transduction domain (TatP) enters the cell remains unclear because of an insufficient understanding of the initial kinetics of peptide entry. Here, we report the successful visualization and tracking of TatP molecular kinetics on the cell surface with 7-nm spatial precision using quantum dots. Strong cell binding was only observed with a TatP valence of ≥8, whereas monovalent TatP binding was negligible. The requirement of the cell-surface heparan sulfate (HS) chains of HS proteoglycans (HSPGs) for TatP binding and intracellular transport was demonstrated by the enzymatic removal of HS and simultaneous observation of two individual particles. Multivalent TatP induces HSPG cross-linking, recruiting activated Rac1 to adjacent lipid rafts and thereby enhancing the recruitment of TatP/HSPG to actin-associated microdomains and its internalization by macropinocytosis. These findings clarify the initial binding mechanism of TatP to the cell surface and demonstrate the importance of TatP valence for strong surface binding and signal transduction. Our data also shed light on the ability of TatP to exploit the machinery of living cells, using HSPG signaling to activate Rac1 and alter TatP mobility and internalization. This work should guide the future design of TatP-based peptides as therapeutic nanocarriers with efficient transduction.
HIV-1-Tat 蛋白转导结构域(TatP)进入细胞的机制尚不清楚,因为对肽进入的初始动力学了解不足。在这里,我们使用量子点成功地可视化和跟踪了 TatP 在细胞表面的分子动力学,具有 7nm 的空间精度。只有当 TatP 的价数≥8 时才观察到强烈的细胞结合,而单价 TatP 结合可以忽略不计。通过酶去除 HS 并同时观察两个单独的粒子,证明了细胞表面硫酸乙酰肝素(HS)链的 HS 蛋白聚糖(HSPGs)对 TatP 结合和细胞内运输的要求。多价 TatP 诱导 HSPG 交联,募集活化的 Rac1 到相邻的脂筏上,从而增强 TatP/HSPG 向肌动蛋白相关微区的募集及其通过巨胞饮作用的内化。这些发现阐明了 TatP 与细胞表面初始结合的机制,并证明了 TatP 价数对于强烈的表面结合和信号转导的重要性。我们的数据还揭示了 TatP 利用活细胞机制的能力,利用 HSPG 信号激活 Rac1 并改变 TatP 的迁移性和内化。这项工作应该为基于 TatP 的肽作为高效转导的治疗性纳米载体的未来设计提供指导。