Department of Cell Biology, School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, People's Republic of China.
School of Life Sciences, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
J Nanobiotechnology. 2022 Jul 20;20(1):340. doi: 10.1186/s12951-022-01530-6.
Practice of tumor-targeted suicide gene therapy is hampered by unsafe and low efficient delivery of plasmid DNA (pDNA). Using HIV-Tat-derived peptide (Tat) to non-covalently form Tat/pDNA complexes advances the delivery performance. However, this innovative approach is still limited by intracellular delivery efficiency and cell-cycle status. In this study, Tat/pDNA complexes were further condensed into smaller, nontoxic nanoparticles by Ca addition. Formulated Tat/pDNA-Ca nanoparticles mainly use macropinocytosis for intercellular delivery, and their macropinocytic uptake was persisted in mitosis (M-) phase and highly activated in DNA synthesis (S-) phase of cell-cycle. Over-expression or phosphorylation of a mitochondrial chaperone, 75-kDa glucose-regulated protein (GRP75), promoted monopolar spindle kinase 1 (MPS1)-controlled centrosome duplication and cell-cycle progress, but also driven cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca nanoparticles. Further in vivo molecular imaging based on DF (Fluc-eGFP)-TF (RFP-Rluc-HSV-ttk) system showed that Tat/pDNA-Ca nanoparticles exhibited highly suicide gene therapy efficiency in mouse model xenografted with human ovarian cancer. Furthermore, arresting cell-cycle at S-phase markedly enhanced delivery performance of Tat/pDNA-Ca nanoparticles, whereas targeting GRP75 reduced their macropinocytic delivery. More importantly, in vivo targeting GRP75 combined with cell-cycle or macropinocytosis inhibitors exhibited distinct suicide gene therapy efficiency. In summary, our data highlight that mitochondrial chaperone GRP75 moonlights as a biphasic driver underlying cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca nanoparticles in ovarian cancer.
肿瘤靶向自杀基因治疗的实践受到质粒 DNA(pDNA)不安全和低效传递的阻碍。使用 HIV-Tat 衍生肽(Tat)非共价形成 Tat/pDNA 复合物可提高传递性能。然而,这种创新方法仍然受到细胞内传递效率和细胞周期状态的限制。在这项研究中,通过添加 Ca 将 Tat/pDNA 复合物进一步浓缩成更小的、无毒的纳米颗粒。形成的 Tat/pDNA-Ca 纳米颗粒主要通过巨胞饮作用进行细胞间传递,其巨胞饮摄取在有丝分裂(M)期持续存在,并在细胞周期的 DNA 合成(S)期高度激活。线粒体伴侣 75kDa 葡萄糖调节蛋白(GRP75)的过表达或磷酸化促进单极纺锤体激酶 1(MPS1)控制的中心体复制和细胞周期进展,但也驱动细胞周期依赖性 Tat/pDNA-Ca 纳米颗粒的巨胞饮作用。进一步基于 DF(Fluc-eGFP)-TF(RFP-Rluc-HSV-ttk)系统的体内分子成像显示,Tat/pDNA-Ca 纳米颗粒在荷有人卵巢癌细胞的小鼠模型中表现出高度的自杀基因治疗效率。此外,将细胞周期阻滞在 S 期可显著提高 Tat/pDNA-Ca 纳米颗粒的传递性能,而靶向 GRP75 则降低其巨胞饮传递。更重要的是,体内靶向 GRP75 结合细胞周期或巨胞饮抑制剂表现出明显不同的自杀基因治疗效率。总之,我们的数据强调了线粒体伴侣蛋白 GRP75 作为双相驱动子,在卵巢癌细胞中驱动 Tat/pDNA-Ca 纳米颗粒的细胞周期依赖性巨胞饮作用。