From the Laboratoire Interactions et Modulateurs de Réponses, CNRS-UPR3243-IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 and.
the Equipe Biosciences iSm2, UMR6263, Case 342, FST Université Paul Cézanne, St. Jérome, 13397 Marseille Cedex 20, France.
J Biol Chem. 2011 Mar 11;286(10):7812-7821. doi: 10.1074/jbc.M110.197988. Epub 2011 Jan 3.
Sulfate reducers have developed a multifaceted adaptative strategy to survive against oxidative stresses. Along with this oxidative stress response, we recently characterized an elegant reversible disulfide bond-dependent protective mechanism in the pyruvate:ferredoxin oxidoreductase (PFOR) of various Desulfovibrio species. Here, we searched for thiol redox systems involved in this mechanism. Using thiol fluorescent labeling, we show that glutathione is not the major thiol/disulfide balance-controlling compound in four different Desulfovibrio species and that no other plentiful low molecular weight thiol can be detected. Enzymatic analyses of two thioredoxins (Trxs) and three thioredoxin reductases allow us to propose the existence of two independent Trx systems in Desulfovibrio vulgaris Hildenborough (DvH). The TR1/Trx1 system corresponds to the typical bacterial Trx system. We measured a TR1 apparent K(m) value for Trx1 of 8.9 μM. Moreover, our results showed that activity of TR1 was NADPH-dependent. The second system named TR3/Trx3 corresponds to an unconventional Trx system as TR3 used preferentially NADH (K(m) for NADPH, 743 μM; K(m) for NADH, 5.6 μM), and Trx3 was unable to reduce insulin. The K(m) value of TR3 for Trx3 was 1.12 μM. In vitro experiments demonstrated that the TR1/Trx1 system was the only one able to reactivate the oxygen-protected form of Desulfovibrio africanus PFOR. Moreover, ex vivo pulldown assays using the mutant Trx1(C33S) as bait allowed us to capture PFOR from the DvH extract. Altogether, these data demonstrate that PFOR is a new target for Trx1, which is probably involved in the protective switch mechanism of the enzyme.
硫酸盐还原菌已经发展出一种多方面的适应策略,以抵御氧化应激。在这种氧化应激反应的基础上,我们最近在各种脱硫弧菌的丙酮酸:铁氧还蛋白氧化还原酶 (PFOR) 中鉴定了一种优雅的可逆二硫键依赖的保护机制。在这里,我们寻找参与该机制的硫醇氧化还原系统。使用硫醇荧光标记,我们表明谷胱甘肽不是四种不同脱硫弧菌中主要的硫醇/二硫键平衡控制化合物,也没有检测到其他丰富的低分子量硫醇。两种硫氧还蛋白 (Trx) 和三种硫氧还蛋白还原酶的酶分析使我们能够提出在脱硫弧菌希尔德布兰德 (DvH) 中存在两个独立的 Trx 系统。TR1/Trx1 系统对应于典型的细菌 Trx 系统。我们测量了 DvH 中 TR1 对 Trx1 的表观 K(m) 值为 8.9 μM。此外,我们的结果表明 TR1 的活性依赖于 NADPH。第二个系统命名为 TR3/Trx3,对应于一种非常规的 Trx 系统,因为 TR3 优先使用 NADH(NADPH 的 K(m) 值为 743 μM;NADH 的 K(m) 值为 5.6 μM),并且 Trx3 无法还原胰岛素。TR3 对 Trx3 的 K(m) 值为 1.12 μM。体外实验表明,TR1/Trx1 系统是唯一能够使非洲脱硫弧菌 PFOR 的氧保护形式重新激活的系统。此外,使用突变 Trx1(C33S)作为诱饵的体外下拉实验使我们能够从 DvH 提取物中捕获 PFOR。总之,这些数据表明 PFOR 是 Trx1 的一个新靶标,它可能参与了酶的保护开关机制。