Suppr超能文献

通过表达 Tbx18 将静止的心肌细胞直接转化为起搏细胞。

Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18.

机构信息

The Cedars-Sinai Heart Institute, Los Angeles, California, USA.

出版信息

Nat Biotechnol. 2013 Jan;31(1):54-62. doi: 10.1038/nbt.2465. Epub 2012 Dec 16.

Abstract

The heartbeat originates within the sinoatrial node (SAN), a small structure containing <10,000 genuine pacemaker cells. If the SAN fails, the ∼5 billion working cardiomyocytes downstream of it become quiescent, leading to circulatory collapse in the absence of electronic pacemaker therapy. Here we demonstrate conversion of rodent cardiomyocytes to SAN cells in vitro and in vivo by expression of Tbx18, a gene critical for early SAN specification. Within days of in vivo Tbx18 transduction, 9.2% of transduced, ventricular cardiomyocytes develop spontaneous electrical firing physiologically indistinguishable from that of SAN cells, along with morphological and epigenetic features characteristic of SAN cells. In vivo, focal Tbx18 gene transfer in the guinea-pig ventricle yields ectopic pacemaker activity, correcting a bradycardic disease phenotype. Myocytes transduced in vivo acquire the cardinal tapering morphology and physiological automaticity of native SAN pacemaker cells. The creation of induced SAN pacemaker (iSAN) cells opens new prospects for bioengineered pacemakers.

摘要

心跳起源于窦房结 (SAN),这是一个包含 <10000 个真正起博细胞的小结构。如果 SAN 失败,其下游的 ∼50 亿个工作心肌细胞会变得静止,导致循环崩溃,如果没有电子起博器治疗的话。在这里,我们通过表达 Tbx18 将啮齿动物心肌细胞在体外和体内转化为 SAN 细胞,Tbx18 是早期 SAN 特化的关键基因。在体内 Tbx18 转导后的几天内,9.2%的转导的心室心肌细胞表现出与 SAN 细胞生理上无法区分的自发电活动,同时具有 SAN 细胞特有的形态和表观遗传特征。在体内,豚鼠心室的局部 Tbx18 基因转移产生异位起博活动,纠正了心动过缓疾病表型。体内转导的心肌细胞获得了天然 SAN 起博细胞的主要变细形态和生理自发性。诱导性 SAN 起博(iSAN)细胞的产生为生物工程起博器开辟了新的前景。

相似文献

1
Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18.
Nat Biotechnol. 2013 Jan;31(1):54-62. doi: 10.1038/nbt.2465. Epub 2012 Dec 16.
3
Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3.
Circ Res. 2009 Feb 13;104(3):388-97. doi: 10.1161/CIRCRESAHA.108.187062. Epub 2008 Dec 18.
5
TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome.
J Physiol. 2018 Dec;596(24):6141-6155. doi: 10.1113/JP276508. Epub 2018 Oct 13.
6
Pacing the Heart with Genes: Recent Progress in Biological Pacing.
Curr Cardiol Rep. 2015 Aug;17(8):65. doi: 10.1007/s11886-015-0620-x.
7
9
Induced cardiac pacemaker cells survive metabolic stress owing to their low metabolic demand.
Exp Mol Med. 2019 Sep 13;51(9):1-12. doi: 10.1038/s12276-019-0303-6.
10
Engineered Cardiac Pacemaker Nodes Created by TBX18 Gene Transfer Overcome Source-Sink Mismatch.
Adv Sci (Weinh). 2019 Sep 30;6(22):1901099. doi: 10.1002/advs.201901099. eCollection 2019 Nov.

引用本文的文献

1
Gene Therapy for Cardiac Arrhythmias: Mechanisms, Modalities and Therapeutic Applications.
Med Sci (Basel). 2025 Jul 30;13(3):102. doi: 10.3390/medsci13030102.
4
Neural signaling contributes to heart formation and growth in the invertebrate chordate, .
bioRxiv. 2025 May 2:2025.04.28.651085. doi: 10.1101/2025.04.28.651085.
5
Gene therapy for cardiac arrhythmias.
Nat Rev Cardiol. 2025 May 23. doi: 10.1038/s41569-025-01168-5.
6
iPSC-Derived Biological Pacemaker-From Bench to Bedside.
Cells. 2024 Dec 11;13(24):2045. doi: 10.3390/cells13242045.
7
Gene Therapy for Cardiovascular Disease: Clinical Perspectives.
Yonsei Med J. 2024 Oct;65(10):557-571. doi: 10.3349/ymj.2024.0127.
8
Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model.
Int J Mol Sci. 2024 Aug 23;25(17):9155. doi: 10.3390/ijms25179155.
9
Pacemaker Channels and the Chronotropic Response in Health and Disease.
Circ Res. 2024 May 10;134(10):1348-1378. doi: 10.1161/CIRCRESAHA.123.323250. Epub 2024 May 9.
10
Transient pacing in pigs with complete heart block via myocardial injection of mRNA coding for the T-box transcription factor 18.
Nat Biomed Eng. 2024 Sep;8(9):1124-1141. doi: 10.1038/s41551-024-01211-9. Epub 2024 May 2.

本文引用的文献

1
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.
Nature. 2012 May 31;485(7400):593-8. doi: 10.1038/nature11044.
2
T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells.
Cardiovasc Res. 2012 Jun 1;94(3):439-49. doi: 10.1093/cvr/cvs120. Epub 2012 Mar 14.
3
Ectopic expression of Nkx2.5 suppresses the formation of the sinoatrial node in mice.
Dev Biol. 2011 Aug 15;356(2):359-69. doi: 10.1016/j.ydbio.2011.05.663. Epub 2011 May 26.
4
Transcriptional suppression of connexin43 by TBX18 undermines cell-cell electrical coupling in postnatal cardiomyocytes.
J Biol Chem. 2011 Apr 22;286(16):14073-9. doi: 10.1074/jbc.M110.185298. Epub 2011 Jan 4.
5
Direct conversion of human fibroblasts to multilineage blood progenitors.
Nature. 2010 Nov 25;468(7323):521-6. doi: 10.1038/nature09591. Epub 2010 Nov 7.
6
Dedifferentiation and proliferation of mammalian cardiomyocytes.
PLoS One. 2010 Sep 3;5(9):e12559. doi: 10.1371/journal.pone.0012559.
7
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.
Cell. 2010 Aug 6;142(3):375-86. doi: 10.1016/j.cell.2010.07.002.
8
Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices?
Circ Res. 2010 Mar 5;106(4):674-85. doi: 10.1161/CIRCRESAHA.109.212936.
10
The role of the funny current in pacemaker activity.
Circ Res. 2010 Feb 19;106(3):434-46. doi: 10.1161/CIRCRESAHA.109.208041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验