Suppr超能文献

距离和活动依赖性调制内侧隔核 V 层锥体神经元中的尖峰逆行传播。

Distance- and activity-dependent modulation of spike back-propagation in layer V pyramidal neurons of the medial entorhinal cortex.

机构信息

Neuroscience Center, Louisiana State University Health Science Center, 2020 Gravier St., New Orleans, LA 70112, USA.

出版信息

J Neurophysiol. 2011 Mar;105(3):1372-9. doi: 10.1152/jn.00014.2010. Epub 2011 Jan 5.

Abstract

Layer V principal neurons of the medial entorhinal cortex receive the main hippocampal output and relay processed information to the neocortex. Despite the fundamental role hypothesized for these neurons in memory replay and consolidation, their dendritic features are largely unknown. High-speed confocal and two-photon Ca(2+) imaging coupled with somatic whole cell patch-clamp recordings were used to investigate spike back-propagation in these neurons. The Ca(2+) transient associated with a single back-propagating action potential was considerably smaller at distal dendritic locations (>200 μm from the soma) compared with proximal ones. Perfusion of Ba(2+) (150 μM) or 4-aminopyridine (2 mM) to block A-type K(+) currents significantly increased the amplitude of the distal, but not proximal, Ca(2+) transients, which is strong evidence for an increased density of these channels at distal dendritic locations. In addition, the Ca(2+) transients decreased with each subsequent spike in a 20-Hz train; this activity-dependent decrease was also more prominent at more distal locations and was attenuated by the perfusion of the protein kinase C activator phorbol-di-acetate. These data are consistent with a phosphorylation-dependent control of back-propagation during trains of action potentials, attributable mainly to an increase in the time constant of recovery from voltage-dependent inactivation of dendritic Na(+) channels. In summary, dendritic Na(+) and A-type K(+) channels control spike back-propagation in layer V entorhinal neurons. Because the activity of these channels is highly modulated, the extent of the dendritic Ca(2+) influx is as well, with important functional implications for dendritic integration and associative synaptic plasticity.

摘要

内侧缰核皮质的 V 层主神经元接收主要的海马输出,并将处理后的信息中继到新皮质。尽管这些神经元在记忆回放和巩固中被假设起着基本作用,但它们的树突特征在很大程度上尚不清楚。高速共聚焦和双光子 Ca(2+)成像与体细胞全细胞膜片钳记录相结合,用于研究这些神经元中的尖峰反向传播。与近端相比,单个反向传播动作电位相关的 Ca(2+)瞬变在远端树突位置(距胞体>200 μm)明显较小。灌流 Ba(2+)(150 μM)或 4-氨基吡啶(2 mM)以阻断 A 型 K(+)电流可显著增加远端 Ca(2+)瞬变的幅度,但近端 Ca(2+)瞬变则不增加,这强烈表明在远端树突位置存在这些通道的密度增加。此外,在 20-Hz 刺激串中的每个后续尖峰时,Ca(2+)瞬变都会减小;这种活动依赖性的减小在更远的位置更为明显,并且通过灌流蛋白激酶 C 激活剂佛波醇二乙酸酯可减弱。这些数据与动作电位刺激串中反向传播的磷酸化依赖性控制一致,主要归因于树突 Na(+)通道电压依赖性失活恢复的时间常数增加。总之,树突 Na(+)和 A 型 K(+)通道控制 V 层缰核神经元中的尖峰反向传播。由于这些通道的活性高度调制,因此树突 Ca(2+)内流的程度也是如此,这对树突整合和联想突触可塑性具有重要的功能意义。

相似文献

引用本文的文献

7
9
Fast spatiotemporal smoothing of calcium measurements in dendritic trees.快速对树突钙测量进行时空平滑处理。
PLoS Comput Biol. 2012 Jun;8(6):e1002569. doi: 10.1371/journal.pcbi.1002569. Epub 2012 Jun 28.
10
Frequency-Dependent Changes in NMDAR-Dependent Synaptic Plasticity.频率依赖性 NMDA 受体依赖性突触可塑性变化。
Front Comput Neurosci. 2011 Sep 29;5:38. doi: 10.3389/fncom.2011.00038. eCollection 2011.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验