Suppr超能文献

评估放射性碘治疗格雷夫斯病时活动测量的准确性和最佳时间。

Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease.

机构信息

Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.

出版信息

Phys Med Biol. 2011 Feb 7;56(3):557-71. doi: 10.1088/0031-9155/56/3/003. Epub 2011 Jan 6.

Abstract

Calculation of the therapeutic activity of radioiodine (131)I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of (131)I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent (131)I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration (131)I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

摘要

计算放射性碘(131)I 治疗 Graves 病的治疗活性需要根据(131)I 的示踪剂活性给药来准确估计甲状腺吸收的辐射剂量。常见的方法(Marinelli-Quimby 公式,MIRD 算法)分别使用甲状腺内放射性碘的有效半衰期和时间积分活性。许多医生在不同时间进行一次、两次或最多三次示踪剂量活性测量,并通过特殊方法计算所需的治疗活性。在本文中,我们研究了四个“目标变量”的估计值的准确性:时间积分活度系数、最大活度时间、最大活度和有效半衰期。使用来自意大利比萨大学医院接受(131)I 治疗 Graves 病的 41 名患者的临床数据进行分析。使用非线性混合效应模型描述放射性碘动力学。描述了患者人群中目标变量的分布。使用最小均方根误差作为标准,确定了用于估计目标变量的最佳 1、2 和 3 点采样方案,并给出了最佳时间下误差的概率边界。为计算目标变量的最佳 1、2 和 3 点采样方案开发了一种算法。该算法在一个免费提供的软件工具中实现。考虑到甲状腺中的(131)I 有效半衰期和测量噪声,时间积分活度系数的最佳 1 点时间是示踪剂剂量后 1 周的测量时间。额外的测量仅能略微提高准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验