Suppr超能文献

曲霉菌来源的纤维二糖脱氢酶的催化特性与分类。

Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes.

机构信息

Department für Lebensmittelwissenschaften und -technologie, Universität für Bodenkultur, Muthgasse 18/2, A-1190 Vienna, Austria.

出版信息

Appl Environ Microbiol. 2011 Mar;77(5):1804-15. doi: 10.1128/AEM.02052-10. Epub 2011 Jan 7.

Abstract

Putative cellobiose dehydrogenase (CDH) genes are frequently discovered in various fungi by genome sequencing projects. The expression of CDH, an extracellular flavocytochrome, is well studied in white rot basidiomycetes and is attributed to extracellular lignocellulose degradation. CDH has also been reported for plant-pathogenic or saprotrophic ascomycetes, but the molecular and catalytic properties of these enzymes are currently less investigated. This study links various ascomycetous cdh genes with the molecular and catalytic characteristics of the mature proteins and suggests a differentiation of ascomycete class II CDHs into two subclasses, namely, class IIA and class IIB, in addition to the recently introduced class III of hypothetical ascomycete CDHs. This new classification is based on sequence and biochemical data obtained from sequenced fungal genomes and a screening of 40 ascomycetes. Thirteen strains showed CDH activity when they were grown on cellulose-based media, and Chaetomium atrobrunneum, Corynascus thermophilus, Dichomera saubinetii, Hypoxylon haematostroma, Neurospora crassa, and Stachybotrys bisbyi were selected for detailed studies. In these strains, one or two cdh-encoding genes were found that stem either from class IIA and contain a C-terminal carbohydrate-binding module or from class IIB without such a module. In several strains, both genes were found. Regarding substrate specificity, class IIB CDHs show a less pronounced substrate specificity for cellobiose than class IIA enzymes. A pH-dependent pattern of the intramolecular electron transfer was also observed, and the CDHs were classified into three groups featuring acidic, intermediate, or alkaline pH optima. The pH optimum, however, does not correlate with the CDH subclasses and is most likely a species-dependent adaptation to different habitats.

摘要

通过基因组测序项目,经常在各种真菌中发现假定的纤维二糖脱氢酶(CDH)基因。胞外黄素细胞色素 CDH 的表达在白腐担子菌中得到了很好的研究,并归因于细胞外木质纤维素的降解。CDH 也已报道存在于植物病原或腐生子囊菌中,但这些酶的分子和催化特性目前研究较少。本研究将各种子囊菌 cdh 基因与成熟蛋白的分子和催化特性联系起来,并建议将子囊菌 II 类 CDH 分为两个亚类,即 IIA 类和 IIB 类,除了最近引入的假定子囊菌 CDH 的 III 类。这种新的分类是基于从测序真菌基因组和 40 个子囊菌筛选获得的序列和生化数据。当在基于纤维素的培养基上生长时,有 13 株菌表现出 CDH 活性,其中 Chaetomium atrobrunneum、Corynascus thermophilus、Dichomera saubinetii、Hypoxylon haematostroma、Neurospora crassa 和 Stachybotrys bisbyi 被选中进行详细研究。在这些菌株中,发现了一个或两个编码 cdh 的基因,它们要么来自 IIA 类,包含一个 C 端碳水化合物结合模块,要么来自 IIB 类,没有这样的模块。在几个菌株中,都发现了这两个基因。关于底物特异性,IIB 类 CDH 对纤维二糖的底物特异性不如 IIA 类酶明显。还观察到分子内电子转移的 pH 依赖性模式,并且将 CDH 分为具有酸性、中间或碱性 pH 最佳值的三个组。然而,pH 最佳值与 CDH 亚类不相关,很可能是物种依赖性的对不同栖息地的适应。

相似文献

1
Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes.
Appl Environ Microbiol. 2011 Mar;77(5):1804-15. doi: 10.1128/AEM.02052-10. Epub 2011 Jan 7.
3
Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation.
Appl Environ Microbiol. 2012 Sep;78(17):6161-71. doi: 10.1128/AEM.01503-12. Epub 2012 Jun 22.
5
Cellobiose dehydrogenase from the ligninolytic basidiomycete Ceriporiopsis subvermispora.
Appl Environ Microbiol. 2009 May;75(9):2750-7. doi: 10.1128/AEM.02320-08. Epub 2009 Mar 6.
6
Structural insights of a cellobiose dehydrogenase enzyme from the basidiomycetes fungus Termitomyces clypeatus.
Comput Biol Chem. 2019 Oct;82:65-73. doi: 10.1016/j.compbiolchem.2019.05.013. Epub 2019 May 30.
7
Exploring class III cellobiose dehydrogenase: sequence analysis and optimized recombinant expression.
Microb Cell Fact. 2024 May 23;23(1):146. doi: 10.1186/s12934-024-02420-2.
9
Cellobiose dehydrogenase--a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi.
Curr Protein Pept Sci. 2006 Jun;7(3):255-80. doi: 10.2174/138920306777452367.
10
Heterologous expression of Phanerochaete chrysosporium cellobiose dehydrogenase in Trichoderma reesei.
Microb Cell Fact. 2021 Jan 6;20(1):2. doi: 10.1186/s12934-020-01492-0.

引用本文的文献

1
Different Effects of Deglycosylation on the Lactose Sensing Ability of Mesophilic and Thermophilic Cellobiose Dehydrogenases.
Appl Biochem Biotechnol. 2025 Mar;197(3):1590-1609. doi: 10.1007/s12010-024-05087-y. Epub 2024 Nov 26.
2
What are the 100 most cited fungal genera?
Stud Mycol. 2024 Jul;108:1-411. doi: 10.3114/sim.2024.108.01. Epub 2024 Jul 15.
3
Soil microbial communities regulate the threshold effect of salinity stress on SOM decomposition in coastal salt marshes.
Fundam Res. 2023 Mar 20;3(6):868-879. doi: 10.1016/j.fmre.2023.02.024. eCollection 2023 Nov.
4
Exploring class III cellobiose dehydrogenase: sequence analysis and optimized recombinant expression.
Microb Cell Fact. 2024 May 23;23(1):146. doi: 10.1186/s12934-024-02420-2.
5
The application of bacteria-derived dehydrogenases and oxidases in the synthesis of gold nanoparticles.
Appl Microbiol Biotechnol. 2024 Dec;108(1):62. doi: 10.1007/s00253-023-12853-1. Epub 2024 Jan 6.
6
Discovery of a Novel Cellobiose Dehydrogenase from EW123 and Its Sugar Acids Production.
J Microbiol Biotechnol. 2024 Feb 28;34(2):457-466. doi: 10.4014/jmb.2307.07004. Epub 2023 Oct 5.
7
Amino Acid Residues Controlling Domain Interaction and Interdomain Electron Transfer in Cellobiose Dehydrogenase.
Chembiochem. 2023 Nov 16;24(22):e202300431. doi: 10.1002/cbic.202300431. Epub 2023 Sep 28.
9
Resolving domain positions of cellobiose dehydrogenase by small angle X-ray scattering.
FEBS J. 2023 Oct;290(19):4726-4743. doi: 10.1111/febs.16885. Epub 2023 Jun 20.

本文引用的文献

2
Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications.
Chemphyschem. 2010 Sep 10;11(13):2674-97. doi: 10.1002/cphc.201000216.
3
Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil.
PLoS One. 2010 Jun 4;5(6):e10971. doi: 10.1371/journal.pone.0010971.
5
Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli.
Biotechnol Lett. 2010 Jun;32(6):855-9. doi: 10.1007/s10529-010-0215-y. Epub 2010 Feb 7.
6
Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22157-62. doi: 10.1073/pnas.0906810106. Epub 2009 Dec 15.
7
The effect of temperature on the proteome of recombinant Pichia pastoris.
J Proteome Res. 2009 Mar;8(3):1380-92. doi: 10.1021/pr8007623.
8
Production of hemicellulose- and cellulose-degrading enzymes by various strains of Sclerotium rolfsii.
Appl Biochem Biotechnol. 1997 Spring;63-65:189-201. doi: 10.1007/BF02920424.
9
The genome sequence of the model ascomycete fungus Podospora anserina.
Genome Biol. 2008;9(5):R77. doi: 10.1186/gb-2008-9-5-r77. Epub 2008 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验