California Institute for Medical Research, San Jose, CA, USA.
Vaccine. 2011 Feb 17;29(9):1745-53. doi: 10.1016/j.vaccine.2010.12.119. Epub 2011 Jan 8.
Heat-killed Saccharomyces cerevisiae (HKY) used as a vaccine protects mice against systemic aspergillosis and coccidioidomycosis. Little is known about the immune response induced by HKY vaccination, consequently our goal was to do an analysis of HKY-induced immune responses involved in protection. BALB/c mice were vaccinated subcutaneously 3 times with HKY, a protective reagent, and bronchoalveolar lavage fluid, spleen, lymph nodes, and serum collected 2-5 weeks later. Cultured spleen or lymph node cells were stimulated with HKY. Proliferation of HKY-stimulated spleen or lymph node cells was tested by Alamar Blue reduction and flow cytometry. Cytokines from lymphocyte supernatants and antibody to glycans in serum collected from HKY-vaccinated mice were measured by ELISA. The results show that HKY promoted spleen cell and lymph node cell proliferation from HKY-vaccinated mice but not from PBS-vaccinated control mice (all P<0.05). Cytokine measurement showed HKY significantly promoted IFNγ, IL-6 and IL-17A production by spleen cells and lymph node cells (all P<0.05 and P<0.01, respectively). Cytokine production by HKY-stimulated cells from PBS-vaccinated mice was lower than those from HKY-vaccinated (P<0.05). Cytokines in BAL from HKY-vaccinated were higher, 1.7-fold for IFNγ and 2.1-fold for TNFα, than in BAL from PBS-vaccinated. Flow cytometry of lymphocytes from HKY-vaccinated showed 52% of CD3(+) or 56% of CD8(+) cells exhibited cell division after stimulation with HKY, compared to non-stimulated controls (26 or 23%, respectively) or HKY-stimulated cells from PBS-vaccinated (31 or 34%). HKY also induced antibody against Saccharomyces glucan and mannan with titers 4- or 2-fold, respectively, above that in unvaccinated. Taken together, the results suggested that HKY vaccination induces significant and specific Th1 type cellular immune responses and antibodies to glucan and mannan.
热灭活酿酒酵母(HKY)用作疫苗可保护小鼠免受系统性曲霉病和球孢子菌病的侵害。人们对 HKY 疫苗接种诱导的免疫反应知之甚少,因此我们的目标是分析参与保护的 HKY 诱导的免疫反应。BALB/c 小鼠经皮下接种 3 次 HKY(一种保护试剂),并在 2-5 周后收集支气管肺泡灌洗液、脾、淋巴结和血清。用 HKY 刺激培养的脾或淋巴结细胞。通过 Alamar Blue 还原和流式细胞术测试 HKY 刺激的脾或淋巴结细胞的增殖。通过 ELISA 测量淋巴细胞上清液中的细胞因子和从 HKY 疫苗接种小鼠收集的血清中的糖抗体。结果表明,与 PBS 疫苗接种的对照小鼠相比,HKY 促进了来自 HKY 疫苗接种小鼠的脾细胞和淋巴结细胞的增殖(均 P<0.05)。细胞因子测量显示,HKY 显著促进了脾细胞和淋巴结细胞 IFNγ、IL-6 和 IL-17A 的产生(均 P<0.05 和 P<0.01)。来自 PBS 疫苗接种小鼠的 HKY 刺激细胞产生的细胞因子低于来自 HKY 疫苗接种的细胞(P<0.05)。来自 HKY 疫苗接种的 BAL 中的细胞因子较高,IFNγ 高 1.7 倍,TNFα 高 2.1 倍,比来自 PBS 疫苗接种的 BAL 高。来自 HKY 疫苗接种的淋巴细胞的流式细胞术显示,与未刺激对照(分别为 26%或 23%)或来自 PBS 疫苗接种的 HKY 刺激细胞(分别为 31%或 34%)相比,经 HKY 刺激后 52%的 CD3(+)或 56%的 CD8(+)细胞发生细胞分裂。HKY 还诱导了针对酿酒酵母葡聚糖和甘露聚糖的抗体,其滴度分别比未接种疫苗的抗体高 4 倍或 2 倍。综上所述,这些结果表明,HKY 疫苗接种可诱导显著且特异性的 Th1 型细胞免疫反应以及针对葡聚糖和甘露聚糖的抗体。