Suppr超能文献

变构作用在药理学中的作用:热力学、进化与设计。

Allostery in pharmacology: thermodynamics, evolution and design.

机构信息

Department of Molecular Pharmacology, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest, Hungary.

出版信息

Prog Biophys Mol Biol. 2011 Sep;106(3):463-73. doi: 10.1016/j.pbiomolbio.2011.01.001. Epub 2011 Jan 9.

Abstract

This review focuses on basic models of allostery, the ambiguous application of the allosteric term in pharmacology illustrated by receptors, the role of thermodynamics in allosteric mechanisms, evolution and design of allostery. The initial step of ligand activation is closure of the agonist-binding cavity. Large entropy increases accompany the agonist-elicited conformational changes of pentameric ligand-gated ion channels due to cavity closure and rearrangement of transmembrane helices. The effects of point mutations on thermodynamic parameters of binding and function can reveal energetic coupling of neighbouring (and distant) amino acid residues in activation. High-order double-mutant cycle analysis and rate-equilibrium linear free-energy relationships can identify the trajectory and conformational spread of activation. Protein assembly and allostery can be deduced from colocalization and physicochemical principles. Molecular evolution has led from homooligomerization of protomers to heterotropic cooperativity and to allosteric regulation. Examples are discussed such as similar paths of protein (dis)assembly and evolution, irreversible evolution, statistical analysis of sequence homology revealing coevolution, different impacts of adaptation and evolution on hemoglobin, and the flagellar motor switch of bacteria. The driving force of dynamic allostery is associated with funnel-like free energy landscapes of protein binding and shifts in conformational fluctuations upon binding. Allostery can be designed based on our increasing knowledge of natural allosteric mechanisms and evolution. The allosteric principle has been applied for various bio/macro/molecular and signal transduction systems as well as in cognitive sciences.

摘要

这篇综述聚焦于变构的基本模型,变构术语在药理学中通过受体的应用所具有的模糊性,变构机制中的热力学作用,以及变构的进化和设计。配体激活的初始步骤是激动剂结合腔的闭合。由于腔的闭合和跨膜螺旋的重排,五聚体配体门控离子通道的激动剂诱发构象变化会伴随大的熵增。点突变对结合和功能的热力学参数的影响可以揭示激活过程中相邻(和远距离)氨基酸残基之间的能量耦联。高阶双突变循环分析和速率-平衡线性自由能关系可以识别激活的轨迹和构象扩展。蛋白质组装和变构作用可以从共定位和物理化学原理中推断出来。分子进化已经从同聚体原聚体发展到异源协同作用和变构调节。例如,讨论了蛋白质(解)组装和进化的相似路径、不可逆进化、序列同源性的统计分析揭示共进化、适应和进化对血红蛋白的不同影响,以及细菌的鞭毛马达开关等例子。动态变构的驱动力与蛋白质结合的漏斗状自由能景观以及结合时构象波动的变化有关。可以根据我们对自然变构机制和进化的不断增加的了解来设计变构作用。变构原理已应用于各种生物/大分子/信号转导系统以及认知科学中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验