Yifrach Ofer, Zandany Nitzan, Shem-Ad Tzilhav
Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
Methods Enzymol. 2009;466:179-209. doi: 10.1016/S0076-6879(09)66008-0. Epub 2009 Nov 13.
Allosteric regulation of protein function is often achieved by changes in protein conformation induced by changes in chemical or electrical potential. In multisubunit proteins, such conformational changes may give rise to cooperativity in ligand binding. Conformational changes between open and closed states are central to the function of voltage-activated potassium (Kv) channel proteins, homotetrameric pore-forming membrane proteins involved in generating and shaping action potentials in excitable cells. Accessible to extremely high signal-to-noise ratio in functional measurements, combined with the availability of high-resolution structural data for different conformations of the protein, the Kv channel represents an excellent allosteric model system to further understand the aspects of synergism and cooperative effects in protein function. In this chapter, we demonstrate how the use of the simple law of mass action combined with thermodynamic mutant cycle energetic coupling analysis of Kv channel gating can be used to provide valuable information regarding (1) how cooperativity in Kv channel pore opening can be assessed; (2) how one can directly discriminate whether conformational transitions during Kv channel pore opening occur in a concerted or sequential manner; and (3) how mechanistically, the coupling between distant activation gate and selectivity filter functional elements of the prototypical Shaker Kv channel protein might be achieved. In addition to providing valuable insight into the function of this important protein, the conclusions reached at using high-order thermodynamic energetic coupling analysis applied to the Kv channel allosteric model system reveal much about the function of allosteric proteins, in general.
蛋白质功能的变构调节通常是通过化学或电势变化诱导的蛋白质构象变化来实现的。在多亚基蛋白质中,这种构象变化可能导致配体结合的协同性。开放态和关闭态之间的构象变化是电压激活钾(Kv)通道蛋白功能的核心,Kv通道蛋白是一种同四聚体孔形成膜蛋白,参与可兴奋细胞中动作电位的产生和形成。在功能测量中可获得极高的信噪比,再加上蛋白质不同构象的高分辨率结构数据,Kv通道代表了一个出色的变构模型系统,可进一步了解蛋白质功能中的协同作用和协同效应。在本章中,我们展示了如何将简单的质量作用定律与Kv通道门控的热力学突变循环能量耦合分析相结合,以提供有关以下方面的有价值信息:(1)如何评估Kv通道孔开放中的协同性;(2)如何直接区分Kv通道孔开放期间的构象转变是以协同方式还是顺序方式发生;(3)从机制上讲,典型的Shaker Kv通道蛋白的远距离激活门和选择性过滤器功能元件之间的耦合是如何实现的。除了为这种重要蛋白质的功能提供有价值的见解外,应用于Kv通道变构模型系统的高阶热力学能量耦合分析得出的结论,总体上也揭示了许多变构蛋白的功能。