Bollepalli Murali K, Fowler Philip W, Rapedius Markus, Shang Lijun, Sansom Mark S P, Tucker Stephen J, Baukrowitz Thomas
Physiological Institute, Christian-Albrechts University, 24118 Kiel, Germany.
Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
Structure. 2014 Jul 8;22(7):1037-46. doi: 10.1016/j.str.2014.04.018. Epub 2014 Jun 26.
X-ray crystallography has provided tremendous insight into the different structural states of membrane proteins and, in particular, of ion channels. However, the molecular forces that determine the thermodynamic stability of a particular state are poorly understood. Here we analyze the different X-ray structures of an inwardly rectifying potassium channel (Kir1.1) in relation to functional data we obtained for over 190 mutants in Kir1.1. This mutagenic perturbation analysis uncovered an extensive, state-dependent network of physically interacting residues that stabilizes the pre-open and open states of the channel, but fragments upon channel closure. We demonstrate that this gating network is an important structural determinant of the thermodynamic stability of these different gating states and determines the impact of individual mutations on channel function. These results have important implications for our understanding of not only K+ channel gating but also the more general nature of conformational transitions that occur in other allosteric proteins.
X射线晶体学极大地增进了我们对膜蛋白尤其是离子通道不同结构状态的了解。然而,决定特定状态热力学稳定性的分子力却鲜为人知。在此,我们结合针对内向整流钾通道(Kir1.1)中190多个突变体所获得的功能数据,分析了Kir1.1的不同X射线结构。这种诱变扰动分析揭示了一个广泛的、依赖于状态的物理相互作用残基网络,该网络稳定了通道的预开放和开放状态,但在通道关闭时瓦解。我们证明,这种门控网络是这些不同门控状态热力学稳定性的重要结构决定因素,并决定了单个突变对通道功能的影响。这些结果不仅对我们理解钾离子通道门控具有重要意义,而且对理解其他变构蛋白中发生的构象转变的更普遍性质也具有重要意义。