Suppr超能文献

调整诊断准确性研究中的差异验证偏倚:一种贝叶斯方法。

Adjusting for differential-verification bias in diagnostic-accuracy studies: a Bayesian approach.

机构信息

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Epidemiology. 2011 Mar;22(2):234-41. doi: 10.1097/EDE.0b013e318207fc5c.

Abstract

In studies of diagnostic accuracy, the performance of an index test is assessed by verifying its results against those of a reference standard. If verification of index-test results by the preferred reference standard can be performed only in a subset of subjects, an alternative reference test could be given to the remainder. The drawback of this so-called differential-verification design is that the second reference test is often of lesser quality, or defines the target condition in a different way. Incorrectly treating results of the 2 reference standards as equivalent will lead to differential-verification bias. The Bayesian methods presented in this paper use a single model to (1) acknowledge the different nature of the 2 reference standards and (2) make simultaneous inferences about the population prevalence and the sensitivity, specificity, and predictive values of the index test with respect to both reference tests, in relation to latent disease status. We illustrate this approach using data from a study on the accuracy of the elbow extension test for diagnosis of elbow fractures in patients with elbow injury, using either radiography or follow-up as reference standards.

摘要

在诊断准确性研究中,通过将指标测试的结果与参考标准进行验证来评估其性能。如果只能在部分受试者中通过首选参考标准来验证指标测试的结果,则可以对其余受试者使用替代参考测试。这种所谓的差异验证设计的缺点是,第二种参考测试通常质量较差,或者以不同的方式定义目标条件。错误地将两种参考标准的结果视为等效会导致差异验证偏倚。本文提出的贝叶斯方法使用单个模型来(1)承认两种参考标准的不同性质,(2)就与潜在疾病状态相关的两个参考标准以及针对这两个参考标准的指标测试的患病率、敏感性、特异性和预测值进行同时推断。我们使用肘部受伤患者中肘部伸展测试对肘部骨折诊断准确性的研究数据来说明这种方法,使用 X 光或随访作为参考标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验