Krioukov Dmitri, Papadopoulos Fragkiskos, Kitsak Maksim, Vahdat Amin, Boguñá Marián
Cooperative Association for Internet Data Analysis (CAIDA), University of California-San Diego (UCSD), La Jolla, California 92093, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036106. doi: 10.1103/PhysRevE.82.036106. Epub 2010 Sep 9.
We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as noninteracting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.
我们开发了一个几何框架来研究复杂网络的结构和功能。我们假设双曲几何是这些网络的基础,并表明在这个假设下,复杂网络中的异质度分布和强聚类作为基础双曲几何的负曲率和度量性质的简单反映自然出现。相反,我们表明,如果一个网络具有某种度量结构,并且如果网络度分布是异质的,那么该网络在其之下具有有效的双曲几何。然后,我们在我们的几何框架和复杂网络的统计力学之间建立了一种映射。这种映射将网络中的边解释为非相互作用的费米子,其能量是节点之间的双曲距离,而与边耦合的辅助场是这些能量或距离的线性函数。几何网络系综将标准配置模型和经典随机图作为具有退化几何结构的两个极限情况包含在内。最后,我们表明,根据所有效率度量,由我们的几何框架实现的无需全局拓扑知识的定向传输过程在具有最强异质性和聚类的网络中是效率最高的,并且这种效率对于网络结构的甚至灾难性干扰和损害都非常稳健。