Istituto dei Sistemi Complessi (CNR-ISC), UOS Sapienza and Dip. di Fisica, Sapienza Università di Roma, P.le A. Moro 2, I-00185 Roma, Italy.
Phys Rev Lett. 2010 Nov 19;105(21):218701. doi: 10.1103/PhysRevLett.105.218701. Epub 2010 Nov 17.
We study the threshold of epidemic models in quenched networks with degree distribution given by a power-law. For the susceptible-infected-susceptible model the activity threshold λ(c) vanishes in the large size limit on any network whose maximum degree k(max) diverges with the system size, at odds with heterogeneous mean-field (HMF) theory. The vanishing of the threshold has nothing to do with the scale-free nature of the network but stems instead from the largest hub in the system being active for any spreading rate λ>1/√k(max) and playing the role of a self-sustained source that spreads the infection to the rest of the system. The susceptible-infected-removed model displays instead agreement with HMF theory and a finite threshold for scale-rich networks. We conjecture that on quenched scale-rich networks the threshold of generic epidemic models is vanishing or finite depending on the presence or absence of a steady state.
我们研究了具有幂律分布的淬火网络中的传染病模型的阈值。对于易感染-感染-易感染模型,在任何最大度 k(max) 随系统大小发散的网络中,活性阈值 λ(c) 在大尺寸极限下趋于零,这与异质均值场 (HMF) 理论不一致。阈值的消失与网络的无标度性质无关,而是源于系统中最大的中心节点在任何传播率 λ>1/√k(max) 下都是活跃的,并扮演着自我维持的源的角色,将感染传播到系统的其余部分。易感染-感染-移除模型则与 HMF 理论一致,并在尺度丰富的网络中显示出有限的阈值。我们推测,在淬火尺度丰富的网络中,一般传染病模型的阈值是消失的还是有限的,这取决于是否存在稳态。