Suppr超能文献

应用于流行病的数学建模:综述。

Mathematical modeling applied to epidemics: an overview.

作者信息

Mata Angélica S, Dourado Stela M P

机构信息

Departamento de Física, Universidade Federal de Lavras, 37200-900 Lavras, MG Brazil.

Departamento de Ciências da Saúde, Universidade Federal de Lavras, 37200-900 Lavras, MG Brazil.

出版信息

Sao Paulo J Math Sci. 2021;15(2):1025-1044. doi: 10.1007/s40863-021-00268-7. Epub 2021 Sep 30.

Abstract

This work presents an overview of the evolution of mathematical modeling applied to the context of epidemics and the advances in modeling in epidemiological studies. In fact, mathematical treatments have contributed substantially in the epidemiology area since the formulation of the famous SIR (susceptible-infected-recovered) model, in the beginning of the 20th century. We presented the SIR deterministic model and we also showed a more realistic application of this model applying a stochastic approach in complex networks. Nowadays, computational tools, such as big data and complex networks, in addition to mathematical modeling and statistical analysis, have been shown to be essential to understand the developing of the disease and the scale of the emerging outbreak. These issues are fundamental concerns to guide public health policies. Lately, the current pandemic caused by the new coronavirus further enlightened the importance of mathematical modeling associated with computational and statistical tools. For this reason, we intend to bring basic knowledge of mathematical modeling applied to epidemiology to a broad audience. We show the progress of this field of knowledge over the years, as well as the technical part involving several numerical tools.

摘要

这项工作概述了应用于流行病背景的数学建模的演变以及流行病学研究中建模的进展。事实上,自20世纪初著名的SIR(易感-感染-康复)模型提出以来,数学处理在流行病学领域做出了重大贡献。我们介绍了SIR确定性模型,并且还展示了在复杂网络中应用随机方法对该模型进行的更实际的应用。如今,除了数学建模和统计分析之外,诸如大数据和复杂网络等计算工具已被证明对于理解疾病的发展和新出现疫情的规模至关重要。这些问题是指导公共卫生政策的基本关注点。最近,由新型冠状病毒引起的当前大流行进一步凸显了与计算和统计工具相关的数学建模的重要性。因此,我们打算将应用于流行病学的数学建模的基础知识带给广大受众。我们展示了这些年该知识领域的进展,以及涉及多种数值工具的技术部分。

相似文献

1
Mathematical modeling applied to epidemics: an overview.应用于流行病的数学建模:综述。
Sao Paulo J Math Sci. 2021;15(2):1025-1044. doi: 10.1007/s40863-021-00268-7. Epub 2021 Sep 30.
3
Modeling Epidemics Spreading on Social Contact Networks.社交接触网络上的流行病传播建模
IEEE Trans Emerg Top Comput. 2015 Sep;3(3):410-419. doi: 10.1109/TETC.2015.2398353. Epub 2015 Sep 4.
8
Uncertainty quantification in epidemiological models for the COVID-19 pandemic.新冠疫情流行病学模型中的不确定性量化。
Comput Biol Med. 2020 Oct;125:104011. doi: 10.1016/j.compbiomed.2020.104011. Epub 2020 Sep 25.

引用本文的文献

本文引用的文献

2
How you can help with COVID-19 modelling.你如何助力新冠病毒建模。
Nat Rev Phys. 2020;2(6):274-275. doi: 10.1038/s42254-020-0175-7. Epub 2020 Apr 8.
5
The turning point and end of an expanding epidemic cannot be precisely forecast.疫情扩张的转折点和终点无法精确预测。
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26190-26196. doi: 10.1073/pnas.2007868117. Epub 2020 Oct 1.
6
A network-based explanation of why most COVID-19 infection curves are linear.基于网络的解释:为什么大多数 COVID-19 感染曲线是线性的。
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22684-22689. doi: 10.1073/pnas.2010398117. Epub 2020 Aug 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验