Suppr超能文献

漏电整合发放神经网络模拟中的主导神经元

Leader neurons in leaky integrate and fire neural network simulations.

作者信息

Zbinden Cyrille

机构信息

Département de Physique Théorique, Université de Genève, 1211, Genève 4, Switzerland.

出版信息

J Comput Neurosci. 2011 Oct;31(2):285-304. doi: 10.1007/s10827-010-0308-6. Epub 2011 Jan 14.

Abstract

In this paper, we highlight the topological properties of leader neurons whose existence is an experimental fact. Several experimental studies show the existence of leader neurons in population bursts of activity in 2D living neural networks (Eytan and Marom, J Neurosci 26(33):8465-8476, 2006; Eckmann et al., New J Phys 10(015011), 2008). A leader neuron is defined as a neuron which fires at the beginning of a burst (respectively network spike) more often than we expect by chance considering its mean firing rate. This means that leader neurons have some burst triggering power beyond a chance-level statistical effect. In this study, we characterize these leader neuron properties. This naturally leads us to simulate neural 2D networks. To build our simulations, we choose the leaky integrate and fire (lIF) neuron model (Gerstner and Kistler 2002; Cessac, J Math Biol 56(3):311-345, 2008), which allows fast simulations (Izhikevich, IEEE Trans Neural Netw 15(5):1063-1070, 2004; Gerstner and Naud, Science 326:379-380, 2009). The dynamics of our lIF model has got stable leader neurons in the burst population that we simulate. These leader neurons are excitatory neurons and have a low membrane potential firing threshold. Except for these two first properties, the conditions required for a neuron to be a leader neuron are difficult to identify and seem to depend on several parameters involved in the simulations themselves. However, a detailed linear analysis shows a trend of the properties required for a neuron to be a leader neuron. Our main finding is: A leader neuron sends signals to many excitatory neurons as well as to few inhibitory neurons and a leader neuron receives only signals from few other excitatory neurons. Our linear analysis exhibits five essential properties of leader neurons each with different relative importance. This means that considering a given neural network with a fixed mean number of connections per neuron, our analysis gives us a way of predicting which neuron is a good leader neuron and which is not. Our prediction formula correctly assesses leadership for at least ninety percent of neurons.

摘要

在本文中,我们着重探讨了主导神经元的拓扑性质,其存在是一个实验事实。多项实验研究表明,在二维活体神经网络的群体活动爆发中存在主导神经元(Eytan和Marom,《神经科学杂志》26(33):8465 - 8476,2006;Eckmann等人,《新物理学杂志》10(015011),2008)。主导神经元被定义为在爆发(或网络尖峰)开始时放电的神经元,相较于根据其平均放电率随机预期的情况更为频繁。这意味着主导神经元具有超出随机水平统计效应的某种爆发触发能力。在本研究中,我们对这些主导神经元的性质进行了表征。这自然地引导我们去模拟二维神经网络。为构建我们的模拟,我们选择了泄漏积分发放(lIF)神经元模型(Gerstner和Kistler,2002;Cessac,《数学生物学杂志》56(3):311 - 345,2008),该模型允许进行快速模拟(Izhikevich,《IEEE神经网络汇刊》15(5):1063 - 1070,2004;Gerstner和Naud,《科学》326:379 - 380,2009)。我们的lIF模型动力学在我们模拟的爆发群体中产生了稳定的主导神经元。这些主导神经元是兴奋性神经元,且具有较低的膜电位放电阈值。除了这两个首要性质外,一个神经元成为主导神经元所需的条件难以确定,似乎取决于模拟本身所涉及的几个参数。然而,详细的线性分析显示了一个神经元成为主导神经元所需性质的趋势。我们的主要发现是:一个主导神经元向许多兴奋性神经元以及少数抑制性神经元发送信号,并且一个主导神经元仅从少数其他兴奋性神经元接收信号。我们的线性分析展示了主导神经元的五个基本性质,每个性质具有不同的相对重要性。这意味着对于一个给定的、每个神经元平均连接数固定的神经网络,我们的分析为我们提供了一种预测哪些神经元是良好的主导神经元以及哪些不是的方法。我们的预测公式至少能正确评估百分之九十神经元的主导地位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验