Naud Richard, Marcille Nicolas, Clopath Claudia, Gerstner Wulfram
Brain Mind Institute and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL Station 15, 1015, Lausanne, Switzerland.
Biol Cybern. 2008 Nov;99(4-5):335-47. doi: 10.1007/s00422-008-0264-7. Epub 2008 Nov 15.
For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.
对于大型脉冲神经元网络的模拟,需要一个准确、简单且通用的单神经元建模框架。在此,我们探讨一种简单的双方程模型——自适应指数积分发放神经元的通用性。我们表明,该模型根据参数值的选择会产生多种发放模式,并给出了一个描述从一种发放类型到另一种发放类型转变的相图。我们给出了一个解析准则来区分连续适应、初始爆发、规则爆发和两种类型的紧张性发放。此外,我们报告称,确定性模型在恒定电流刺激下能够产生不规则发放,表明存在低维混沌。最后,将该简单模型拟合到皮层神经元在阶跃电流刺激下的真实实验中。结果为自适应指数积分发放神经元等简单模型适用于大型网络模拟提供了支持。