Suppr超能文献

从积分发放网络模型计算局部场电位(LFP)

Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.

作者信息

Mazzoni Alberto, Lindén Henrik, Cuntz Hermann, Lansner Anders, Panzeri Stefano, Einevoll Gaute T

机构信息

The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.

Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.

出版信息

PLoS Comput Biol. 2015 Dec 14;11(12):e1004584. doi: 10.1371/journal.pcbi.1004584. eCollection 2015 Dec.

Abstract

Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.

摘要

泄漏整合发放(LIF)网络模型通常用于研究神经网络的发放动力学如何随刺激、任务或动态网络状态而变化。然而,体内神经生理学研究通常更多地是用局部场电位(LFP)来测量神经元微电路的群体活动。鉴于LFP是由跨神经元膜的空间分离电流产生的,它们不能直接从点状LIF神经元模型中定义的量计算得出。在这里,我们探索基于点神经元LIF网络的标准输出预测LFP的最佳近似方法。为了寻找这个最佳的“LFP代理”,我们将基于LIF网络输出的候选代理(例如发放率、膜电位、突触电流)的LFP预测与当LIF网络突触输入电流注入具有真实形态、胞体和突触空间分布的多室神经元的类似三维(3D)网络模型时获得的“真实”LFP进行了比较。我们发现,LIF突触电流的特定固定线性组合提供了一个准确的LFP代理,占3D网络中所有记录位置观察到的LFP时间进程方差的大部分。该代理在广泛的条件下表现良好,包括神经元形态的显著变化。我们的结果提供了一个简单的公式,用于在单个锥体神经元群体主导LFP产生的情况下,从LIF网络模拟中估计LFP的时间进程,从而便于计算模型与体内实验LFP记录之间的定量比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c3e/4682791/ed60a8d8b060/pcbi.1004584.g001.jpg

相似文献

1
Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.
PLoS Comput Biol. 2015 Dec 14;11(12):e1004584. doi: 10.1371/journal.pcbi.1004584. eCollection 2015 Dec.
2
Computation of the electroencephalogram (EEG) from network models of point neurons.
PLoS Comput Biol. 2021 Apr 2;17(4):e1008893. doi: 10.1371/journal.pcbi.1008893. eCollection 2021 Apr.
3
Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks.
Front Neural Circuits. 2014 Mar 5;8:12. doi: 10.3389/fncir.2014.00012. eCollection 2014.
4
Estimation of neural network model parameters from local field potentials (LFPs).
PLoS Comput Biol. 2020 Mar 10;16(3):e1007725. doi: 10.1371/journal.pcbi.1007725. eCollection 2020 Mar.
5
Stimulus dependence of local field potential spectra: experiment versus theory.
J Neurosci. 2014 Oct 29;34(44):14589-605. doi: 10.1523/JNEUROSCI.5365-13.2014.
6
Leader neurons in leaky integrate and fire neural network simulations.
J Comput Neurosci. 2011 Oct;31(2):285-304. doi: 10.1007/s10827-010-0308-6. Epub 2011 Jan 14.
7
Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
PLoS Comput Biol. 2017 Jun 23;13(6):e1005545. doi: 10.1371/journal.pcbi.1005545. eCollection 2017 Jun.
8
Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
J Neurophysiol. 2005 Dec;94(6):4344-61. doi: 10.1152/jn.00510.2004. Epub 2005 Aug 10.
9
Precision constrained stochastic resonance in a feedforward neural network.
IEEE Trans Neural Netw. 2005 Jan;16(1):250-62. doi: 10.1109/TNN.2004.836195.
10
Phase-locking of bursting neuronal firing to dominant LFP frequency components.
Biosystems. 2015 Oct;136:73-9. doi: 10.1016/j.biosystems.2015.08.004. Epub 2015 Aug 21.

引用本文的文献

2
Amplifying post-stimulation oscillatory dynamics by engaging synaptic plasticity with transcranial alternating current stimulation.
Front Netw Physiol. 2025 Jul 18;5:1621283. doi: 10.3389/fnetp.2025.1621283. eCollection 2025.
3
A Python toolbox for neural circuit parameter inference.
NPJ Syst Biol Appl. 2025 May 9;11(1):45. doi: 10.1038/s41540-025-00527-9.
4
On the validity of electric brain signal predictions based on population firing rates.
PLoS Comput Biol. 2025 Apr 14;21(4):e1012303. doi: 10.1371/journal.pcbi.1012303. eCollection 2025 Apr.
5
Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks.
Nat Neurosci. 2025 Apr;28(4):873-882. doi: 10.1038/s41593-025-01893-7. Epub 2025 Mar 24.
6
Entropy and Complexity Tools Across Scales in Neuroscience: A Review.
Entropy (Basel). 2025 Jan 24;27(2):115. doi: 10.3390/e27020115.
7
Touch-evoked traveling waves establish a translaminar spacetime code.
Sci Adv. 2025 Jan 31;11(5):eadr4038. doi: 10.1126/sciadv.adr4038.
9
10
Revisiting the role of computational neuroimaging in the era of integrative neuroscience.
Neuropsychopharmacology. 2024 Nov;50(1):103-113. doi: 10.1038/s41386-024-01946-8. Epub 2024 Sep 6.

本文引用的文献

1
Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs).
Neuroinformatics. 2015 Oct;13(4):403-26. doi: 10.1007/s12021-015-9265-6.
2
Stimulus dependence of local field potential spectra: experiment versus theory.
J Neurosci. 2014 Oct 29;34(44):14589-605. doi: 10.1523/JNEUROSCI.5365-13.2014.
3
Independent components of neural activity carry information on individual populations.
PLoS One. 2014 Aug 25;9(8):e105071. doi: 10.1371/journal.pone.0105071. eCollection 2014.
5
Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks.
Front Neural Circuits. 2014 Mar 5;8:12. doi: 10.3389/fncir.2014.00012. eCollection 2014.
6
LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons.
Front Neuroinform. 2014 Jan 16;7:41. doi: 10.3389/fninf.2013.00041. eCollection 2013.
7
9
Frequency dependence of signal power and spatial reach of the local field potential.
PLoS Comput Biol. 2013;9(7):e1003137. doi: 10.1371/journal.pcbi.1003137. Epub 2013 Jul 18.
10
On high-frequency field oscillations (>100 Hz) and the spectral leakage of spiking activity.
J Neurosci. 2013 Jan 23;33(4):1535-9. doi: 10.1523/JNEUROSCI.4217-12.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验