Mazzoni Alberto, Lindén Henrik, Cuntz Hermann, Lansner Anders, Panzeri Stefano, Einevoll Gaute T
The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.
PLoS Comput Biol. 2015 Dec 14;11(12):e1004584. doi: 10.1371/journal.pcbi.1004584. eCollection 2015 Dec.
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.
泄漏整合发放(LIF)网络模型通常用于研究神经网络的发放动力学如何随刺激、任务或动态网络状态而变化。然而,体内神经生理学研究通常更多地是用局部场电位(LFP)来测量神经元微电路的群体活动。鉴于LFP是由跨神经元膜的空间分离电流产生的,它们不能直接从点状LIF神经元模型中定义的量计算得出。在这里,我们探索基于点神经元LIF网络的标准输出预测LFP的最佳近似方法。为了寻找这个最佳的“LFP代理”,我们将基于LIF网络输出的候选代理(例如发放率、膜电位、突触电流)的LFP预测与当LIF网络突触输入电流注入具有真实形态、胞体和突触空间分布的多室神经元的类似三维(3D)网络模型时获得的“真实”LFP进行了比较。我们发现,LIF突触电流的特定固定线性组合提供了一个准确的LFP代理,占3D网络中所有记录位置观察到的LFP时间进程方差的大部分。该代理在广泛的条件下表现良好,包括神经元形态的显著变化。我们的结果提供了一个简单的公式,用于在单个锥体神经元群体主导LFP产生的情况下,从LIF网络模拟中估计LFP的时间进程,从而便于计算模型与体内实验LFP记录之间的定量比较。