Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA.
Brain Behav Immun. 2011 May;25(4):629-39. doi: 10.1016/j.bbi.2010.12.016. Epub 2011 Jan 13.
Increased polyamine production is observed in a variety of chronic neuroinflammatory disorders, but in vitro and in vivo studies yield conflicting data on the immunomodulatory consequences of their production. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in endogenous polyamine production. To identify the role of polyamine production in CNS-intrinsic inflammatory responses, we defined CNS sites of ODC expression and the consequences of inhibiting ODC in response to intracerebral injection of LPS±IFNγ. In situ hybridization analysis revealed that both neurons and non-neuronal cells rapidly respond to LPS±IFNγ by increasing ODC expression. Inhibiting ODC by co-injecting DFMO decreased LPS-induced CCL2 expression and macrophage influx into the CNS, without altering LPS-induced microglial or macrophage activation. Conversely, intracerebral injection of polyamines was sufficient to trigger macrophage influx into the CNS of wild-type but not CCL2KO mice, demonstrating the dependence of macrophage influx on CNS expression of CCL2. Consistent with these data, addition of putrescine and spermine to mixed glial cultures dramatically increased CCL2 expression and to a much lesser extent, TNF expression. Addition of all three polyamines to mixed glial cultures also decreased the numbers and percentages of oligodendrocytes present. However, in vivo, inhibiting the basal levels of polyamine production was sufficient to induce expression of apolipoprotein D, a marker of oxidative stress, within white matter tracts. Considered together, our data indicate that: (1) CNS-resident cells including neurons play active roles in recruiting pro-inflammatory TREM1-positive macrophages into the CNS via polyamine-dependent induction of CCL2 expression and (2) modulating polyamine production in vivo may be a difficult strategy to limit inflammation and promote repair due to the dual homeostatic and pro-inflammatory roles played by polyamines.
在各种慢性神经炎症性疾病中观察到多胺的产生增加,但在体外和体内研究中,其产生的免疫调节后果产生了相互矛盾的数据。鸟氨酸脱羧酶(ODC)是内源性多胺产生的限速酶。为了确定多胺产生在中枢神经系统固有炎症反应中的作用,我们确定了 ODC 在中枢神经系统中的表达部位,并研究了在脑内注射 LPS±IFNγ 时抑制 ODC 的后果。原位杂交分析显示,神经元和非神经元细胞都能迅速通过增加 ODC 的表达对 LPS±IFNγ 作出反应。通过共注射 DFMO 抑制 ODC 会降低 LPS 诱导的 CCL2 表达和巨噬细胞流入中枢神经系统,但不改变 LPS 诱导的小胶质细胞或巨噬细胞的激活。相反,脑内注射多胺足以引发野生型小鼠但不是 CCL2KO 小鼠的巨噬细胞流入中枢神经系统,这表明巨噬细胞流入依赖于 CCL2 在中枢神经系统中的表达。与这些数据一致,向混合神经胶质培养物中添加腐胺和精胺会极大地增加 CCL2 的表达,并在较小程度上增加 TNF 的表达。向混合神经胶质培养物中添加这三种多胺也会减少存在的少突胶质细胞的数量和百分比。然而,在体内,抑制多胺产生的基础水平足以诱导载脂蛋白 D 的表达,载脂蛋白 D 是氧化应激的标志物,存在于白质束中。综合考虑,我们的数据表明:(1)包括神经元在内的中枢神经系统固有细胞通过多胺依赖性诱导 CCL2 表达,在招募促炎性 TREM1 阳性巨噬细胞进入中枢神经系统方面发挥积极作用;(2)由于多胺发挥着双重的稳态和促炎作用,因此在体内调节多胺的产生可能是限制炎症和促进修复的困难策略。